Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Helps Confirm Link between Fungus and Bat Epidemic

08.11.2011
Bats in North America are under attack. Since 2006, more than a million have been killed. Little has been done to save them, because there has not been enough evidence to implicate the suspect—until now.

A study has discovered that the fungus Geomyces destructans is the causal agent of White-nose Syndrome (WNS), the fungal disease decimating the bat population.

The study is coauthored by Justin Boyles, a post-doctoral research associate in ecology and evolutionary biology at the University of Tennessee, Knoxville, and a team led by David Blehert at the U.S. Geological Survey (USGS) National Wildlife Health Center together with Jeffrey Lorch, a graduate student at the University of Wisconsin, Madison. WNS is dubbed so because affected bats develop halos of white fungus around their muzzles. The symptoms of WNS include loss of body fat, unusual winter behavior, lesions to the wing membranes, and death.

The findings are published in the latest edition of Nature.

G. destructans has been thought to be the likely culprit, because the skin lesions characteristic of the disease are associated with colonization of the fungus. Still, the role of G. destructans in WNS has remained controversial, because evidence proving the fungus as the primary cause of the disease was lacking.

"Many assumed that fungal infections in mammals only occur if some other pathogen has already weakened the immune system," said Boyles. "Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats in Europe with no major die-offs generated speculation that other unidentified factors are the primary cause of WNS."

To put the speculation to rest, the researchers set up an experiment to see if G. destructans causes WNS. They housed healthy little brown bats in a laboratory under hibernation conditions and treated them with G. destructans. Exposure to the fungus caused WNS in the healthy bats. They also found that WNS can be transmitted from infected bats to healthy bats through direct contact.

"This information can be very useful to managers in their efforts to contain the spread of the disease," said Boyles. "These results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America suggests the fungus is new to the continent and the bats here have not developed immunity to the disease."

The researchers are hopeful the findings will allow land managers and reseachers to focus efforts on solutions that may slow the spread of the fungus to new bat populations.

"By illustrating that the fungus causes WNS, we are taking an instrumental step in clarifying how this disease develops and how to control it," said Boyles. "We hope our findings are useful in guiding management actions to preserve bat populations against this novel and devastating threat."

Boyles collaborated with Blehert, Lorch, Carol Meteyer and Anne Ballmann from the National Wildlife Health Center at the USGS in Madison, Wisc.; Melissa Behr at the Wisconsin Veterinary Diagnostic Laboratory in Madison, Wisc.; Paul Cryan from the Fort Collins Science Center at USGS in Fort Collins, Colo.; Alan Hicks from the New York Department of Environmental Conservation in Albany, N.Y.; Jeremy Coleman from the U.S. Fish and Wildlife Service in Hadley, Mass.; David Redell from the Wisconsin Department of Natural Resources in Madison, Wisc.; and DeeAnn Reeder from Bucknell University in Lewisburg, Pa.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>