Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmon Runs Boom, Go Bust Over Centuries

17.01.2013
Salmon runs are notoriously variable: strong one year, and weak the next. New research shows that the same may be true from one century to the next.

Scientists in the past 20 years have recognized that salmon stocks vary not only year to year, but also on decades-long time cycles. One example is the 30-year to 80-year booms and busts in salmon runs in Alaska and on the West Coast driven by the climate pattern known as the Pacific Decadal Oscillation.

Now work led by University of Washington researchers reveals those decadal cycles may overlay even more important, centuries-long conditions, or regimes, that influence fish productivity. Cycles lasting up to 200 years were found while examining 500-year records of salmon abundance in Southwest Alaska. Natural variations in the abundance of spawning salmon are as large those due to human harvest.

“We’ve been able to reconstruct what salmon runs looked like before the start of commercial fishing. But rather than finding a flat baseline – some sort of long-term average run size – we’ve found that salmon runs fluctuated hugely, even before commercial fishing started. That these strong or weak periods could persist for sometimes hundreds of years means we need to reconsider what we think of as ‘normal’ for salmon stocks,” said Lauren Rogers, who did this work while earning her doctorate in aquatic and fishery sciences at the UW and is now a post-doctoral researcher with the University of Oslo, Norway.

Rogers is the lead author of a paper on the findings in the Jan. 14 online early edition of the Proceedings of the National Academy of Sciences.

“Surprisingly, salmon populations in the same regions do not all show the same changes through time. It is clear that the salmon returning to different rivers march to the beat of a different – slow – drummer,” said Daniel Schindler, UW professor of aquatic and fishery sciences and co-author of the paper.

“The implications for management are profound,” Schindler said. “While it is convenient to assume that ecosystems have a constant static capacity for producing fish, or any natural resource, our data demonstrate clearly that capacity is anything but stationary. Thus, management must be ready to reduce harvesting when ecosystems become unexpectedly less productive and allow increased harvesting when ecosystems shift to more productive regimes.

“Management should also allow, and probably even encourage, fishers to move among rivers to exploit salmon populations that are particularly productive. It is not realistic to assume that all rivers in a region will perform equally well or poorly all the time,” he said.

The researchers examined sediment cores collected from 20 sockeye nursery lakes within 16 major watersheds in southwestern Alaska, including those of Bristol Bay. The scientists homed in on the isotopic signature of nitrogen that salmon accumulate in the ocean and leave behind in lake sediments when they die: When there was a lot of such nitrogen in the sediments, it meant returning runs during that time period were abundant; when there was little, runs had declined.

Climate is not the only reason for long-term changes in salmon abundance. Changes in food webs, diseases or other factors might be involved; however, at present, there are no clear explanations for the factors that cause the long-term variability observed in this study.

Most, but not all, of the lakes examined showed declines in the kind of nitrogen the scientists were tracking beginning around 1900, once commercial fisheries had developed. However, earlier fluctuations showed that natural processes had at times reduced salmon densities as much as recent commercial fisheries, the co-authors said.

“We expected to detect a signal of commercial fishing – fisheries remove a lot of the salmon, and thus salmon nitrogen, that would have otherwise ended up in the sediments. But we were surprised to find that previous returns of salmon to rivers varied just as dramatically,” Rogers said.

As the paper said, “Interestingly these same fluctuations also highlight that salmon stocks have the capacity to rebuild naturally following prolonged periods with low densities, suggesting a strong resilience of salmon to natural and anthropogenic depletion processes. Indeed, total salmon production (catch plus escapements) has been relatively high in recent years for most sockeye salmon stocks in southwestern Alaska, despite a century of intense harvesting.”

Other co-authors are Peter Lisi and Gordon Holtgrieve with the UW, Peter Leavitt and Lynda Bunting with University of Regina, Canada, Bruce Finney with Idaho State University, Daniel Selbie with Fisheries and Oceans Canada, Canada, Guangjie Chen with Yunnan Normal University, China, Irene Gregory-Eaves with McGill University, Canada, and Mark Lisac and Patrick Walsh with Togiak National Wildlife Refuge, Alaska.

Funding was provided by the Gordon and Betty Moore Foundation, the National Science Foundation, the U.S. Fish and Wildlife Service and the Natural Sciences and Engineering Research Council of Canada.

For more information:
Rogers, lauren.rogers@bio.uio.no
Schindler, 206-616-6724, deschind@uw.edu
Suggested websites:
--Paper abstract
http://www.pnas.org/content/early/2013/01/15/1212858110.abstract
--Proceedings of the National Academy of Sciences
http://www.pnas.org/
--Daniel Schindler
http://fish.washington.edu/people/schindler/

Sandra Hines | Newswise
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>