Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rodent Size Linked to Human Population and Climate Change

03.08.2009
While you probably hadn't noticed, the head shape and overall size of rodents has been changing over the past century. University of Illinois at Chicago ecologist Oliver Pergams has tied these changes to human population density and climate change.

You probably hadn't noticed -- but the head shape and overall size of rodents has been changing over the past century. A University of Illinois at Chicago ecologist has tied these changes to human population density and climate change.

The finding is reported by Oliver Pergams, UIC research assistant professor of biological sciences, in the July 31 issue of PLoS One.

Pergams said that such size-and-shape changes in mammals, occurring around the world in less than a century, are quite substantial.

He had done earlier studies on a century's worth of anatomic changes between two geographically isolated rodents -- Channel Island deer mice from coastal California and white-footed mice northwest of Chicago -- and noted fast change among both.

"I suspected they weren't unique examples," he said. "I wondered whether these changes were occurring elsewhere, whether they were global in nature, and what some of the causes may be."

Pergams examined specimen rodents from museums around the world, including the big collections held at Chicago's Field Museum and the Smithsonian in Washington. Altogether, he recorded more than 17,000 body and skull measurements from 1,300 specimens from 22 locations in Africa, the Americas and Asia. The animals were collected from 1892 to 2001, and Pergams compared those from before 1950 to those collected after.

He also compared specimens gathered from sparsely populated islands to those from the mainland, where human populations were denser.

Pergams found both increases and decreases in the 15 anatomic traits he measured, with changes as great as 50 percent over 80 years. Ten of the 15 traits were associated with changes in human population density, current temperature, or trends in temperature and precipitation.

"Rapid change, contrary to previous opinion, really seems to be happening quite frequently in a number of locations around the world," Pergams said. "There seem to be significant correlations with 'people-caused' parameters, such as population density and anthropologically-caused climate change."

While Pergams' study was by no means comprehensive, it was the first attempt of its kind to examine data on mammals from many global locations to find links between morphological change and variables such as population density and changing climate.

"Species can adapt quickly to rapid environmental changes -- quicker than many people have thought, especially for mammals," said Pergams. "Those mammals that can adapt quickly have a much higher chance to survive big environmental changes caused by humans. Understanding which species and populations have the greatest ability to change has a crucial impact on being able to conserve biodiversity."

The research was funded through a grant from the National Science Foundation and The Nature Conservancy. Climate change at various locations was tracked by Joshua Lawler of the University of Washington, who is co-author of the study.

An MP3 podcast on this subject is available at:

https://blackboard.uic.edu/bbcswebdav/institution/web/news/podcasts/PdCst64-July31%2709-Pergams.mp3

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>