Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice, Penn State nanotube blocks show promise for environmental cleanup, among many uses

17.04.2012
Researchers at Rice University and Penn State University have discovered that adding a dash of boron to carbon while creating nanotubes turns them into solid, spongy, reusable blocks that have an astounding ability to absorb oil spilled in water.

That’s one of a range of potential innovations for the material created in a single step. The team found for the first time that boron puts kinks and elbows into the nanotubes as they grow and promotes the formation of covalent bonds, which give the sponges their robust qualities.

The researchers, who collaborated with peers in labs around the nation and in Spain, Belgium and Japan, revealed their discovery in Nature’s online open-access journal Scientific Reports.

Lead author Daniel Hashim, a graduate student in the Rice lab of materials scientist Pulickel Ajayan, said the blocks are both superhydrophobic (they hate water, so they float really well) and oleophilic (they love oil). The nanosponges, which are more than 99 percent air, also conduct electricity and can easily be manipulated with magnets.

To demonstrate, Hashim dropped the sponge into a dish of water with used motor oil floating on top. The sponge soaked it up. He then put a match to the material, burned off the oil and returned the sponge to the water to absorb more. The robust sponge can be used repeatedly and stands up to abuse; he said a sample remained elastic after about 10,000 compressions in the lab. The sponge can also store the oil for later retrieval, he said.

“These samples can be made pretty large and can be easily scaled up,” said Hashim, holding a half-inch square block of billions of nanotubes. “They’re super-low density, so the available volume is large. That’s why the uptake of oil can be so high.” He said the sponges described in the paper can absorb more than a hundred times their weight in oil.

Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, said multiwalled carbon nanotubes grown on a substrate via chemical vapor deposition usually stand up straight without any real connections to their neighbors. But the boron-introduced defects induced the nanotubes to bond at the atomic level, which tangled them into a complex network. Nanotube sponges with oil-absorbing potential have been made before, but this is the first time the covalent junctions between nanotubes in such solids have been convincingly demonstrated, he said.

“The interactions happen as they grow, and the material comes out of the furnace as a solid,” Ajayan said. “People have made nanotube solids via post-growth processing but without proper covalent connections. The advantage here is that the material is directly created during growth and comes out as a cross-linked porous network.

“It’s easy for us to make nano building blocks, but getting to the macroscale has been tough,” he said. “The nanotubes have to connect either through some clever way of creating topological defects, or they have to be welded together.”

When he was an undergraduate student of Ajayan’s at Rensselaer Polytechnic Institute, Hashim and his classmates discovered hints of a topological solution to the problem while participating in a National Science Foundation exchange program at the Institute of Scientific Research and Technology (IPICYT) in San Luis Potosí, Mexico. The paper’s co-author, Mauricio Terrones, a professor of physics, materials science and engineering at Penn State University with an appointment at Shinshu University, Japan, led a nanotechnology lab there.

“Our goal was to find a way to make three-dimensional networks of these carbon nanotubes that would form a macroscale fabric — a spongy block of nanotubes that would be big and thick enough to be used to clean up oil spills and to perform other tasks,” Terrones said. “We realized that the trick was adding boron — a chemical element next to carbon on the periodic table — because boron helps to trigger the interconnections of the material. To add the boron, we used very high temperatures and we then ‘knitted’ the substance into the nanotube fabric.”

The researchers have high hopes for the material’s environmental applications. “For oil spills, you would have to make large sheets of these or find a way to weld sheets together (a process Hashim continues to work on),” Ajayan said.

“Oil-spill remediation and environmental cleanup are just the beginning of how useful these new nanotube materials could be,” Terrones added. “For example, we could use these materials to make more efficient and lighter batteries. We could use them as scaffolds for bone-tissue regeneration. We even could impregnate the nanotube sponge with polymers to fabricate robust and light composites for the automobile and plane industries.”

Hashim suggested his nanosponges may also work as membranes for filtration.

“I don’t think anybody has created anything like this before,” Ajayan said. “It’s a spectacular nanostructured sponge.”

The paper’s co-authors are Narayanan Narayanan, Myung Gwan Hahm, Joseph Suttle and Robert Vajtai, all of Rice; Jose Romo-Herrera of the University of Vigo, Spain; David Cullen and Bobby Sumpter of Oak Ridge National Laboratory, Oak Ridge, Tenn.; Peter Lezzi and Vincent Meunier of Rensselaer Polytechnic Institute; Doug Kelkhoff of the University of Illinois at Urbana-Champaign; E. Muñoz-Sandoval of the Instituto de Microelectrónica de Madrid; Sabyasachi Ganguli and Ajit Roy of the Air Force Research Laboratory, Dayton, Ohio (on loan from IPICYT); David Smith of Arizona State University; and Humberto Terrones of Oak Ridge National Lab and the Université Catholique de Louvain, Belgium.

The National Science Foundation and the Air Force Office of Scientific Research Project MURI program for the synthesis and characterization of 3-D carbon nanotube solid networks supported the research.
Read the open access paper at http://www.nature.com/srep/2012/120413/srep00363/full/srep00363.html

Video: http://www.youtube.com/watch?v=OCKyMn-2edo

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>