Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Return of the Slime

05.03.2012
The oozy, green, bottom-dwelling alga called Cladophora glomerata has squished around toes about as long as people have been wading in the Great Lakes.

It was never a serious nuisance, however, until the mid-twentieth century, when humans began discharging phosphorus into the Great Lakes in a big way. That led to an unprecedented number of huge, gooey mats of Cladophora (pronounced klah-DAH-for-uh) covering entire beaches with a thick layer of rotting muck.

Then came the Great Lakes Water Quality Agreement, and the mats of Cladophora all but disappeared, thanks to tough new regulations that limited phosphorus. Now Cladophora is back with a vengeance, thanks this time to billions of exotic zebra mussels that have created its perfect habitat.

First, the filter-feeders clarify the Great Lakes water, allowing in more sunlight--and allowing Cladophora to grow in areas that were once too dark. Second, they excrete a type of phosphorus that Cladophora love to ingest. And third, their hard shells covering the sandy lake bottom provide solid real estate where the algae can attach.

Is there hope? Maybe. With funding from the Environmental Protection Agency’s Great Lakes Restoration Initiative, Robert Shuchman, codirector of the Michigan Tech Research Institute, and his research team are helping resource managers get their arms around the Cladophora problem.

“The EPA asked us to find out where Cladophora is concentrated,” Shuchman said. With thousands of miles of Great Lakes shoreline, no one had a good estimate of the extent of the Cladophora beds.

Shuchman’s team uses remote-sensing data from satellites. They measure “radiance,” or reflective brightness, to distinguish Cladophora beds from areas where the lake bottom is clear. That’s relatively easy at a constant depth, but radiance drops as water gets deeper.

To account for the difference, Shuchman integrated the satellite data with information on the lake bottoms and developed an elegant algorithm that compensates for the depth of the water.

“By doing this, we can map Cladophora in a straightforward way,” he said. To verify their results, researchers boat along the shoreline and visually check for Cladophora, often using a remote-controlled mini-submarine camera. These surveys showed their remote-sensing analysis to be about 90 percent accurate.

Shuchman’s team will also track the historical ebb and flow of Cladophora by applying the algorithm to satellite images that go back decades.

Armed with this information, resource managers will be able to locate Cladophora beds and tell if their cleanup efforts are working. The EPA is already using their data to track the health of the Great Lakes. The researchers are also considering ways to track the algal mats, which typically slough off the lake bottom in midsummer, and possibly block them before they land on beaches or in the cooling water intakes of nuclear power plants.

The team members will map all US waters in the Great Lakes that are optically visible—those parts where light can be reflected off the bottom. Already they have determined that sunlight is reaching much more of the lake bottom than in years past, thanks to the mussels’ insatiable appetite for water-clouding plankton.

The team has already finished mapping Lake Michigan. They have found Cladophora on 591 square miles, or about a third of the optically visible area. Ironically, Cladophora is superabundant near Sleeping Bear Dunes National Lakeshore, where twenty-inch-thick algal mats lie just a few yards off shore.

In addition to creating a repulsive viewing experience, rotting Cladophora provides ripe conditions for avian botulism and has been implicated in the poisoning deaths of thousands of shorebirds.

The abundance of Cladophora could have even broader implications. “It’s a little bit scary,” Shuchman said, in part because the Michigan Department of Natural Resources reports that the exotic Asian carp can eat Cladophora. The voracious fish have infested the Mississippi River system, and many fear they will expand their range into the Great Lakes via the Chicago Shipping Canal.

The filter-feeding quagga mussels have essentially wiped out their potential food supply in the middle of Lake Michigan, “so the carp will never survive in deep water,” said Shuchman. “But there’s plenty of Cladophora near the shore for them to eat.”

Robert Shuchman | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>