Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Return of the Slime

05.03.2012
The oozy, green, bottom-dwelling alga called Cladophora glomerata has squished around toes about as long as people have been wading in the Great Lakes.

It was never a serious nuisance, however, until the mid-twentieth century, when humans began discharging phosphorus into the Great Lakes in a big way. That led to an unprecedented number of huge, gooey mats of Cladophora (pronounced klah-DAH-for-uh) covering entire beaches with a thick layer of rotting muck.

Then came the Great Lakes Water Quality Agreement, and the mats of Cladophora all but disappeared, thanks to tough new regulations that limited phosphorus. Now Cladophora is back with a vengeance, thanks this time to billions of exotic zebra mussels that have created its perfect habitat.

First, the filter-feeders clarify the Great Lakes water, allowing in more sunlight--and allowing Cladophora to grow in areas that were once too dark. Second, they excrete a type of phosphorus that Cladophora love to ingest. And third, their hard shells covering the sandy lake bottom provide solid real estate where the algae can attach.

Is there hope? Maybe. With funding from the Environmental Protection Agency’s Great Lakes Restoration Initiative, Robert Shuchman, codirector of the Michigan Tech Research Institute, and his research team are helping resource managers get their arms around the Cladophora problem.

“The EPA asked us to find out where Cladophora is concentrated,” Shuchman said. With thousands of miles of Great Lakes shoreline, no one had a good estimate of the extent of the Cladophora beds.

Shuchman’s team uses remote-sensing data from satellites. They measure “radiance,” or reflective brightness, to distinguish Cladophora beds from areas where the lake bottom is clear. That’s relatively easy at a constant depth, but radiance drops as water gets deeper.

To account for the difference, Shuchman integrated the satellite data with information on the lake bottoms and developed an elegant algorithm that compensates for the depth of the water.

“By doing this, we can map Cladophora in a straightforward way,” he said. To verify their results, researchers boat along the shoreline and visually check for Cladophora, often using a remote-controlled mini-submarine camera. These surveys showed their remote-sensing analysis to be about 90 percent accurate.

Shuchman’s team will also track the historical ebb and flow of Cladophora by applying the algorithm to satellite images that go back decades.

Armed with this information, resource managers will be able to locate Cladophora beds and tell if their cleanup efforts are working. The EPA is already using their data to track the health of the Great Lakes. The researchers are also considering ways to track the algal mats, which typically slough off the lake bottom in midsummer, and possibly block them before they land on beaches or in the cooling water intakes of nuclear power plants.

The team members will map all US waters in the Great Lakes that are optically visible—those parts where light can be reflected off the bottom. Already they have determined that sunlight is reaching much more of the lake bottom than in years past, thanks to the mussels’ insatiable appetite for water-clouding plankton.

The team has already finished mapping Lake Michigan. They have found Cladophora on 591 square miles, or about a third of the optically visible area. Ironically, Cladophora is superabundant near Sleeping Bear Dunes National Lakeshore, where twenty-inch-thick algal mats lie just a few yards off shore.

In addition to creating a repulsive viewing experience, rotting Cladophora provides ripe conditions for avian botulism and has been implicated in the poisoning deaths of thousands of shorebirds.

The abundance of Cladophora could have even broader implications. “It’s a little bit scary,” Shuchman said, in part because the Michigan Department of Natural Resources reports that the exotic Asian carp can eat Cladophora. The voracious fish have infested the Mississippi River system, and many fear they will expand their range into the Great Lakes via the Chicago Shipping Canal.

The filter-feeding quagga mussels have essentially wiped out their potential food supply in the middle of Lake Michigan, “so the carp will never survive in deep water,” said Shuchman. “But there’s plenty of Cladophora near the shore for them to eat.”

Robert Shuchman | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>