Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restored wetlands rarely equal condition of original wetlands

25.01.2012
Study shows plant assemblage, carbon resources depleted even after 100 years

Wetland restoration is a billion-dollar-a-year industry in the United States that aims to create ecosystems similar to those that disappeared over the past century. But a new analysis of restoration projects shows that restored wetlands seldom reach the quality of a natural wetland.

"Once you degrade a wetland, it doesn't recover its normal assemblage of plants or its rich stores of organic soil carbon, which both affect natural cycles of water and nutrients, for many years," said David Moreno-Mateos, a University of California, Berkeley, postdoctoral fellow. "Even after 100 years, the restored wetland is still different from what was there before, and it may never recover."

Moreno-Mateos's analysis calls into question a common mitigation strategy exploited by land developers: create a new wetland to replace a wetland that will be destroyed and the land put to other uses. At a time of accelerated climate change caused by increased carbon entering the atmosphere, carbon storage in wetlands is increasingly important, he said.

"Wetlands accumulate a lot of carbon, so when you dry up a wetland for agricultural use or to build houses, you are just pouring this carbon into the atmosphere," he said. "If we keep degrading or destroying wetlands, for example through the use of mitigation banks, it is going to take centuries to recover the carbon we are losing."

The study showed that wetlands tend to recover most slowly if they are in cold regions, if they are small – less than 100 contiguous hectares, or 250 acres, in area – or if they are disconnected from the ebb and flood of tides or river flows.

"These context dependencies aren't necessarily surprising, but this paper quantifies them in ways that could guide decisions about restoration, or about whether to damage wetlands in the first place," said coauthor Mary Power, UC Berkeley professor of integrative biology.

Moreno-Mateos, Power and their colleagues will publish their analysis in the Jan. 24 issue of PLoS (Public Library of Science) Biology.

Wetlands provide many societal benefits, Moreno-Mateos noted, such as biodiversity conservation, fish production, water purification, erosion control and carbon storage.

He found, however, that restored wetlands contained about 23 percent less carbon than untouched wetlands, while the variety of native plants was 26 percent lower, on average, after 50 to 100 years of restoration. While restored wetlands may look superficially similar – and the animal and insect populations may be similar, too – the plants take much longer to return to normal and establish the carbon resources in the soil that make for a healthy ecosystem.

Moreno-Mateos noted that numerous studies have shown that specific wetlands recover slowly, but his meta-analysis "might be a proof that this is happening in most wetlands."

"To prevent this, preserve the wetland, don't degrade the wetland," he said.

Moreno-Mateos, who obtained his Ph.D. while studying wetland restoration in Spain, conducted a meta-analysis of 124 wetland studies monitoring work at 621 wetlands around the world and comparing them with natural wetlands. Nearly 80 percent were in the United States and some were restored more than 100 years ago, reflecting of a long-standing American interest in restoration and a common belief that it's possible to essentially recreate destroyed wetlands. Half of all wetlands in North America, Europe, China and Australia were lost during the 20th century, he said. S

Though Moreno-Mateos found that, on average, restored wetlands are 25 percent less productive than natural wetlands, there was much variation. For example, wetlands in boreal and cold temperate forests tend to recover more slowly than do warm wetlands. One review of wetland restoration projects in New York state, for example, found that "after 55 years, barely 50 percent of the organic matter had accumulated on average in all these wetlands" compared to what was there before, he said.

"Current thinking holds that many ecosystems just reach an alternative state that is different, and you never will recover the original," he said.

In future studies, he will explore whether the slower carbon accumulation is due to a slow recovery of the native plant community or invasion by non-native plants.

Coauthors with Moreno-Mateos and Power are Francisco A. Comin of the Department of Conservation of Biodiversity and Ecosystem Restoration at the Pyrenean Institute of Ecology in Zaragoza, Spain; and Roxana Yockteng of the National Museum of Natural History in Paris, France. Moreno-Mateos recently accepted a position as the restoration fellow at Stanford University's Jasper Ridge Biological Preserve.

The work was supported by the Spanish Ministry for Innovation and Science, the Spanish Foundation for Science and Technology and the National Center for Earth Surface Dynamics of the U.S. National Science Foundation Science and Technology Center.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>