Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find More Strategic Culling Needed to Reduce Lionfish Invasion

14.08.2015

Existing Efforts Aren’t Enough - International Steps Must be Taken

We've all seen the stories – lionfish derbies and other efforts are ongoing in the United States and Caribbean, all with the goal of helping to decrease the number of highly invasive and ecologically devastating lionfish in our oceans.


Nova Southeastern University

Lionfish

A new analysis published in the journal Marine Ecology Progress Series now suggests that unfortunately, the existing typically localized and intermittent derby efforts are barely making a dent in reducing overall lionfish numbers and containing their spread. This is because the culling effort is too small and locations for culling are chosen without taking into consideration direction of currents which can carry lionfish larvae to downstream regions far away.

"For every lionfish we remove during local derbies or spearfishing, there are probably hundreds of others we miss," said Matthew Johnston, Ph.D., of Nova Southeastern University's Halmos College of Natural Sciences and Oceanography.

"What is really needed to lower their numbers is consistent removal of the fish in all places they live – deep, shallow, remote – and of all ages. Derbies and spearfishing only target adult fish in shallow water. Unfortunately, that's simply not enough, and to be effective we also have to consider the impact of currents that spread the lionfish larvae."

Dr. Johnston and fellow researcher Sam Purkis, Ph.D. have been studying invasive species for quite some time, with a particular focus on lionfish. Their computer models combine ocean currents and biological traits of lionfish to predict their spread. Lionfish have shown they can take over – and in some cases devastate – a coral reef ecosystem as they do not have any natural predators in the waters of the United States and the Caribbean. The research is showing that lionfish are spreading as all of our waters are connected by ocean currents.

"We're all connected by water flow," Dr. Johnston said. "That means one area that has uncontrolled lionfish populations can dramatically increase lionfish numbers in nations downstream."

You can see a YouTube video of ocean currents in the invaded range of lionfish here (http://tippor.mattspace.com/index.php/9-news/22-ocean-currents ).

In this new study, Drs. Johnston and Purkis estimated the amount of culling that would be needed to be effective at reducing lionfish numbers. They found that control efforts would require regular removal of at least 20% of the population per month in an area that had a lot of lionfish, but would also require the same level of culling in regions upstream to "choke off" the supply of larvae carried by currents. Furthermore, this culling would need to target all lionfish (large and small animals, those living in deep and remote waters).

Dr. Johnston added that an important part of the solution should be international cooperation between the affected nations (i.e. the entire Caribbean, the U.S., Mexico, Central and South America.) He said coming together to address the issue is urgently needed as it would benefit every nation plagued with lionfish.

"The culling we're doing now with local derbies is helping, but it's really a drop in the proverbial bucket, he said. "If we’re to have a significant impact on the lionfish population, we need to be more strategic in our removal efforts and find more ways of removing them from all of our waters, and do it consistently."

One example of how ocean currents help spread lionfish can be seen in earlier research conducted by Drs. Johnston and Purkis. Their research found that hurricanes and other tropical storms help accelerate the spread of these exotic fish by impacting the flow of water in the Florida Straits. Normally ocean currents represent a potential barrier to the transport of lionfish eggs and larvae across the Florida Straits. But as a hurricane passes, the flow of water shifts from a strong, northern flow to a strong, eastern flow. It's these changes in flow direction and speed that likely carry lionfish larvae and eggs from Florida to the Bahamas and can explain how lionfish were able to cross the Gulf Stream so soon after their introduction to South Florida waters.

You can view a video about Johnston's and Purkis' research on how hurricanes aid in the spread of lionfish on YouTube ( https://www.youtube.com/watch?v=bb6QXIuWuSo ).

To view the new study online, please visit Marine Ecology Progress Series
( http://dx.doi.org/10.3354/meps11399 ).

About Nova Southeastern University (NSU): Located in beautiful Fort Lauderdale, Florida, Nova Southeastern University (NSU) is a dynamic research institution dedicated to providing high-quality educational programs at the undergraduate, graduate, and first-professional degree levels. A private, not-for-profit institution with more than 24,000 students, NSU has campuses in Fort Lauderdale, Fort Myers, Jacksonville, Miami, Miramar, Orlando, Palm Beach, and Tampa, Florida, as well as San Juan, Puerto Rico, while maintaining a presence online globally. For more than 50 years, NSU has been awarding degrees in a wide range of fields, while fostering groundbreaking research and an impactful commitment to community. Classified as a research university with "high research activity" by the Carnegie Foundation for the Advancement of Teaching, NSU is 1 of only 37 universities nationwide to also be awarded Carnegie's Community Engagement Classification, and is also the largest private, not-for-profit institution in the United States that meets the U.S. Department of Education's criteria as a Hispanic-serving Institution.

Please visit www.nova.edu  for more information.

About NSU's Halmos College of Natural Sciences and Oceanography: The college provides high-quality undergraduate and graduate (master's and doctoral degrees and certificates) education programs in a broad range of disciplines, including marine sciences, mathematics, biophysics, and chemistry. Researchers carry out innovative basic and applied marine research programs in coral reef biology, ecology, and geology; fish biology, ecology, and conservation; shark and billfish ecology; fisheries science; deep-sea organismal biology and ecology; invertebrate and vertebrate genomics, genetics, molecular ecology, and evolution; microbiology; biodiversity; observation and modeling of large-scale ocean circulation, coastal dynamics, and ocean atmosphere coupling; benthic habitat mapping; biodiversity; histology; and calcification. The college's newest building is the state-of-the-art Guy Harvey Oceanographic Center, an 86,000-square-foot structure filled with laboratories, offices, seminar rooms, an auditorium and indoor and outdoor running sea water facilities.

Please visit www.cnso.nova.edu  for more information.

Contact Information
Joe Donzelli
Associate Director, Public Affairs
jdonzelli@nova.edu
Phone: 954-262-2159

Joe Donzelli | newswise

Further reports about: Invasion Lionfish Marine Ecology NSU coral reef ecology

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>