Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Thinks "Inside the Box" to Create Self-contained Wastewater System for Soldiers, Small Towns

18.09.2009
Cheaper. Better. Faster. Most people will say you can't have all three. But don't tell that to Dr. Jianmin Wang, a professor of civil, architectural and environmental engineering at Missouri University of Science and Technology.

Wang has created a wastewater system "in a box." Each system, built by re-purposing a shipping container, is low power, low maintenance and highly efficient. Built from weathering steel, these containers are designed to be tough and can be dropped on site by helicopters.

The system’s scorecard is so good that it could be deployed anywhere – from small, rural communities to forward operating bases, like those in Iraq or Afghanistan. Currently, the typical 600-soldier forward operating base requires a daily convoy of 22 trucks to supply the base with fuel or water and dispose of wastewater and solid waste. With few mechanical parts and a small footprint, the system is ideal for military use, Wang says.

“Currently, human wastes are typically burned in burn pits, and the wastewater is usually hauled away and dumped by local contractors,” Wang explains. “This results in high costs, security issues, potential health risks, negative environmental impacts to the hosting country and a potential negative image.

“Moreover, almost all fresh water used in the camp – including water for drinking, bathing, showering, laundry, car washing and toilet flushing ¬– is from outside sources in the form of bottled and surface water. A deployable and easy-to-use water reclamation station, which transforms wastewater into reusable water within the base, would improve the base environment, security, soldiers’ health, stewardship of foreign lands and concurrently reduce cost and fresh water demand from off-base sources.”

Current wastewater treatment options include membrane bioreactor, activated sludge, fixed film or on-site septic systems. Similar to these methods, Wang’s process uses microorganisms to break down the organic pollutants. Membrane bioreactor, activated sludge process and fixed-film process have been built using standard shipping containers, too. But that’s where the similarities end.

The membrane bioreactor process, while similar in size and quality of effluent produced, has extremely higher energy and maintenance costs, and up to 10 times more expensive parts.

“The fixed-film system, as developed by other companies, needs to be monitored and controlled constantly,” Wang says. “Plus our system is much smaller than their systems – only 20-30 percent of the size of these systems for the same treatment capacity. Our system does not use any media, which significantly reduces construction and maintenance cost.”

Wang’s system, named a baffled bioreactor (BBR) by Wang, modifies the conventional activated sludge process by using baffles to create a maintenance-free intermediate settling chamber for sludge return. It uses off-the-shelf, low-tech parts to treat wastewater at a level that exceeds federal standards. The water can be used for non-contact applications, including toilet flushing and car washing.

Although this project is focused on military needs, Wang says the small, low-maintenance and low-power system makes sense for small communities, mobile home parks, motels and even facilities in remote areas, such as highway rest areas and camps.

A few days ago, the U.S. Army approved Wang’s request to demonstrate a full-scale, company-size water reclamation station for advanced wastewater and non-potable reuse. During this project, he will also explore the feasibility of producing potable water from wastewater in emergency situations.

“A lesson learned from Hurricane Katrina is that untreated sewage can cause many health and psychological problems for displaced people,” Wang adds. “The transportable, modular baffled reactor units could even be deployed to regions where natural disasters occur to quickly prevent untreated wastewater discharge and improve hygiene.”

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>