Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows That Reported Oil Sands Emissions Greatly Underestimated

06.02.2014
A new comprehensive modeling assessment of contamination in the Athabasca Oil Sands Region indicates that officially reported emissions of certain hazardous air pollutants have been greatly underestimated.

The results of the assessment, which was carried out by University of Toronto Scarborough Environmental Chemistry professor Frank Wania and his PhD candidate Abha Parajulee, will be published in the Proceedings of the National Academy of Science Monday, February 3 2014. The study constitutes the most comprehensive such model that has been done for the Oil Sands Region.

The team used a model to assess the plausibility of reported emissions of a group of atmospheric pollutants known as polycyclic aromatic hydrocarbons (PAHs). Many PAHs are highly carcinogenic.

“When dealing with chemicals that have the potential to harm people and animals, it is vital that we have a good understanding of how, and how much they are entering the environment,” said Parajulee, the lead author of the paper.

PAHs are released during the process of extracting petroleum from the oil sands. Environmental Impact Assessments have so far only considered the PAHs that are released directly into the atmosphere. The risk associated with those direct releases was judged to fall within acceptable regulatory limits.

The model used by Parajulee and Wania takes into account other indirect pathways for the release of PAHs that hadn’t been assessed before or were deemed negligible. For instance, they found that evaporation from tailings ponds – lakes of polluted water also created through oil sands processing – may actually introduce more PAHs into the atmosphere than direct emissions.

“Tailings ponds are not the end of the journey for many of the pollutants they contain. Some PAHs are volatile, meaning they escape into the air much more than many people think,” says Parajulee. (pictured seated at right with Wania).

The higher levels of PAHs the UTSC scientists’ model predicts when accounting for emissions from tailings ponds are consistent with what has actually been measured in samples taken from areas near and in the Athabasca Oil Sands Region.

The authors also found, however, that tailings ponds emissions are likely not significant contributors of relatively involatile PAHs to the Oil Sands Region atmosphere. Instead, other emissions sources not taken into account by the environmental impact assessment, such as blowing dust, are probably more important for these chemicals.

The pair of researchers modeled only three PAHs, which they believe are representative of others. Still, they say, their model indicates better monitoring data and emissions information are needed to improve our understanding of the environmental impact of the oil sands even further.

“Our study implies that PAH concentrations in air, water, and food, that are estimated as part of environmental impact assessments of oil sands mining operations are very likely too low,” says Wania. “Therefore the potential risks to humans and wildlife may also have been underestimated.”

Don Campbell | Newswise
Further information:
http://www.utoronto.ca

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>