Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Helps Predict Bat Presence at Wind Energy Facilities

10.01.2012
Pacific Southwest Research Station/USDA Forest Service
Science that makes a difference. . .

An interactive tool developed by researchers from the USDA Forest Service’s Pacific Southwest Research Station (PSW) will help wind energy facility operators make informed decisions on efficient ways to reduce impacts on migratory bats.

Fatalities of migratory bats at wind energy facilities have become a frequent occurrence. Bat migration patterns are poorly understood and the relationship between fatalities at wind energy facilities and migratory behavior are still being studied. Previous research has shown that adjusting the operations of turbines can reduce the number of bats killed at wind energy facilities. However, this strategy has not yet been widely implemented.

Current research found that bat activity depends on time of year and a number of environmental conditions, such as wind direction and speed, air temperature, and moon phase. This suggests that there may be ways to improve the effectiveness and efficiency of mitigation measures. PSW ecologist Ted Weller and statistician Jim Baldwin developed an interactive tool that allows users to visualize how changes in date and weather conditions affect the probability of bat presence. The tool can be found at: http://www.fs.fed.us/psw/topics/wildlife/bat/batprob.shtml

“Increasing the wind speed at which turbines begin to spin and produce energy to the grid has proven to be an effective way to reduce bat fatalities. However, bat activity levels depend on more than just wind speed,” says Weller, who led the research. “Our work demonstrates the use of a decision-making tool that could protect bats when fatality risk is highest while maximizing energy production on nights with a low chance of fatalities.”

Weller and his research team used devices which detected the bats’ echolocation calls, then linked the presence of bats to the weather conditions measured on-site on a given night. Researchers found that echolocation detectors placed at 22 meters and 52 meters above ground were more effective at characterizing migratory bat activity then those located closer to the ground. Moreover, multiple echolocation detectors were required to accurately characterize bat activity at the facility. They then built models to predict the presence of bats based on date and weather variables.

“Properly deployed echolocation monitoring can be an effective way to predict bat activity and, presumably, fatalities at wind energy facilities,” says Weller. “These days, pre-construction echolocation monitoring is as common as meteorological monitoring at wind energy facilities, so the basic building blocks for these models are available at most proposed sites.”

Researchers conducted the study at a wind energy facility in the San Gorgonio Pass Wind Resource Area near Palm Springs, Calif. The study was a collaborative effort between government, industry, and a non-governmental organization to devise effective solutions to 21st century environmental issues. Cooperators included PSW, Iberdrola Renewables, and the Bats and Wind Energy Cooperative, with primary funding provided by the California Energy Commission Public Interest Energy Research program.

Findings from this study appear online in the Journal of Wildlife Management. Read the full article at: http://treesearch.fs.fed.us/pubs/39603.

Headquartered in Albany, California, the Pacific Southwest Research develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the U.S.-affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw/.

Sherri Eng | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Urban growth causes more biodiversity loss outside of cities
10.12.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren
10.12.2019 | Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>