Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research is ensuring stormwater systems are designed for the future

24.04.2012
Whether the weather is cold or hot, rainy or not, research is ensuring stormwater systems are designed for the future

In a world of changing weather and rainfall patterns, engineers face challenges when designing stormwater management systems.

A Kansas State University team is researching how climate change is affecting rainfall and weather patterns throughout Kansas to help with future adaptation and mitigation strategies. The research team, led by Stacy Hutchinson, associate professor of biological and agricultural engineering, is updating rainfall distribution data to ensure current stormwater management systems can handle future weather changes.

"We are looking at how the state can minimize risk by developing a better understanding of past weather variability while looking forward at the variability expected with future climate change -- whether it is farm production systems or stormwater management," Hutchinson said.

Collaborators on the project include Shawn Hutchinson, associate professor of geography; Aavudai Anandhi Swamy, research assistant professor of agronomy; and Vahid Rahmani, doctoral student in biological and agricultural engineering, Iran. Rahmani is researching Kansas rainfall data and recently received a first-place award at the K-State Research Forum for his oral presentation "Intense rainfall events distribution pattern in the state of Kansas."

"Our research involves understanding how climate change and land cover change -- which is the conversion of natural prairie land and agricultural land to urban and suburban land uses -- affect the potential for flooding," Hutchinson said. "It's where the variability of reality meets the built engineered world."

When engineers design stormwater management systems -- such as terraces and grass waterways in crop fields or storm sewers with underground pipes that transport road runoff to the nearest body of water -- these systems are usually designed to handle a specific storm. In the Manhattan area, natural systems such as grassed waterways and terraces are designed to handle slightly more than 3.5 inches of rain in 24 hours. This rainfall event is expected to happen once every 10 years.

Issues arise because the National Weather Service has not updated rainfall distribution maps for the state of Kansas since 1961. Researchers are updating this data to provide a more accurate weather benchmark that engineers can use when designing stormwater systems. Kansas is ideal for studying climate change and variability because there is more variability across Kansas than from the eastern edge of Kansas to the Atlantic Ocean, Hutchinson said.

To track weather patterns and understand how they have changed, the researchers conducted a similar analysis as the 1961 data. Rahmani studied weather and rainfall data from 24 weather stations in Kansas and 15 stations outside the state. The researchers noticed several trends in the data they collected.

"We're actually seeing more rain across the state, which is kind of surprising because we thought it would be getting drier in the western part of the state," Hutchinson said. "We are getting wetter across the state, but it is much more drastic in the southeast, where we are seeing more high-intensity storms."

The research team found that the 1961 data overestimated the size of storms. That means the currently designed systems are adequate for stormwater management, Hutchinson said, but if the shift in more rain and stronger weather events continues, stormwater systems may need to be redesigned.

"There is discussion among the engineering community about if we need to rethink the size of storm that we design for," Hutchinson said. "The bottom line is that now we have an idea of how weather trends have shifted across the state. This information will be useful to anybody who deals with stormwater runoff -- from the Kansas Department of Transportation to agricultural producers."

The research also is helpful for improving natural stormwater systems, which especially interests Hutchinson. She has studied how to move away from the concrete jungle of pipes and move toward more natural stormwater management systems, such as wetlands, rain gardens and terracing. Challenges exist with natural systems because climate and land cover changes have caused many more peaks and valleys in stormwater runoff -- from times with flooding to drought periods. As a result, natural systems tend to be at capacity in the spring because of increased rainfall and they tend to dry up during the summer when it rains less.

"We needed a better understanding of the variability of the weather so that we could better understand any risks with these natural systems," Hutchinson said. "The amount of water that flows through a pipe is pretty consistent and you can always size a pipe. But the amount of water that can be absorbed by a wetland systems is a lot more in August when it is hot and dry than it is in May."

The researchers are continuing to analyze data and are preparing the research for publication. Their work is funded as part of the $20 million Kansas National Science Foundation Experimental Program to Stimulate Competitive Research project researching global climate change and renewable energy research.

Stacy Hutchinson | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Riveting,Screwing, Gluing in Aircraft Construction: Smart Human-Robot Teams Master Agile Production

26.03.2019 | Trade Fair News

Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity

26.03.2019 | Life Sciences

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>