Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research commitment to save the Vasa

20.11.2008
How should the humidity, temperature, and light be set to preserve the royal warship Vasa for posterity? How much and how quickly are the ship's wood and preservative breaking down, and how is the ship's stability being affected by this?

Researchers are now going to study the degradation processes and test new methods for determine their speed, including the monitoring of how much oxygen is consumed. They will also trying out new methods for removing iron and neutralizing acids to stop the degradation. A major co-financed project will provide SEK 18 million.

Press release from the Swedish Research Council Formas, the Swedish Foundation for Strategic Research, the Swedish Research Council, and VINNOVA (the Swedish Governmental Agency for Innovation Systems), 2008-11-19

The royal warship Vasa is one of Sweden's best known and most frequently visited tourist attractions. The ship and the objects it carried are a source of knowledge about the living conditions, culture, and technology of the 17th century.

"It is urgent and important to contribute to research that can enable us to preserve the ship for posterity," says Rolf Annerberg, director general of the Swedish Research Council Formas, one of the financiers behind the new research project.

A total of SEK 18 million will be committed to the project. Formas will provide SEK 1.6 million, the Foundation for Strategic Research SEK 2 million, VINNOVA SEK 2 million, and the Swedish Research Council SEK 0.9 million. The bulk of the funding, SEK 11.6 million, will come from the Swedish National Maritime Museums, SMM.

The ship which weighs about 1,000 tons, contains some 2 tons of sulfur, 2 tons of iron, and 50 tons of preservative. To a depth of 5-10 millimeters the wood is depleted of cellulose, which bacteria on the bottom of the bay consumed over the 333 years the ship lay there. Sulfur compounds from the brackish water and from the sewage of the city were absorbed by the wood and now exists in various chemical forms, either free or bound to iron or to components of the wood. Iron compounds come from iron bolts that have rusted away and from cannonballs, and they are widely diffused in the wood.

The project will address the issues that remain unanswered: To what extent and how quickly are the various components of the wood and preservative breaking down. How is this degradation affected by access to atmospheric oxygen, the moisture of the wood, the presence of iron compounds and sulfur compounds, and temperature? How can these processes be stopped? How are the properties of the wood and thereby the entire ship's stability impacted by these processes? Among other things, the project will test new methods for analyzing wood, metering gas diffusion, and monitoring oxygen consumption. This is a comprehensive project, and the several thousand objects sometimes require other methods for preservation than those used for the hull.

The project will be carried out in 2009-2011 under the direction of SMM, with the participation of the Swedish University of Agricultural Sciences, STFI-Packforsk, the National Museum of Denmark, and the Royal Institute of Technology in Stockholm.

Emilie von Essen | alfa
Further information:
http://www.formas.se

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>