Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model revises estimates of terrestrial carbon dioxide uptake

11.12.2007
Researchers at the University of Illinois have developed a new model of global carbon and nitrogen cycling that will fundamentally transform the understanding of how plants and soils interact with a changing atmosphere and climate.

The new model takes into account the role of nitrogen dynamics in influencing the response of terrestrial ecosystems to climate change and rising atmospheric carbon dioxide.

Current models used in the assessment reports of the Intergovernmental Panel on Climate Change do not account for nitrogen processing, and probably exaggerate the terrestrial ecosystem’s potential to slow atmospheric carbon dioxide rise, the researchers say. They will present their findings this week at the annual meeting of the American Geophysical Union in San Francisco.

In the face of global climate change, world leaders are in need of models that can reliably predict how land use and other human activities affect atmospheric carbon dioxide levels. Deforestation and the burning of coal and oil increase atmospheric carbon dioxide and contribute to global warming.

Growing plants take carbon dioxide from the air and store it as carbon in their tissues. This means that plant growth – especially that of trees – can help reduce the effects of rising carbon dioxide levels, which contribute to global warming.

Scientists have struggled for decades to build computer models that accurately predict how plants and soils will respond to rising carbon dioxide levels in the atmosphere.

In the 1990s, researchers reported that crop plants such as cotton or wheat are more productive when exposed to higher carbon dioxide levels. This “fertilization effect” increases CO2 uptake and was hailed by some as evidence that Earth’s forests also would take up more carbon dioxide as atmospheric levels increased.

But models of the carbon cycle have failed to take into account how nitrogen availability influences this equation on the global scale, said Atul Jain, a U. of I. professor of atmospheric sciences and principal investigator on the development of the new model.

Nitrogen is vital to carbon dioxide uptake in plants, and if the available nitrogen runs out, the plants won’t be able to make use of the added CO2, Jain said. In an agricultural landscape, nitrogen may be added as needed, he said, but forests have limited amounts of nitrogen in their soils.

The integrated science assessment model, originally developed by Jain, now has been expanded to take into account the net carbon impact of human activities and the role of rising atmospheric temperatures on the process of carbon uptake.

“Everything is integrated, not only the nitrogen, carbon and climate, but also we looked at land cover and land use changes,” Jain said. “A lot of deforestation and also aforestation and reforestation are going on, and that has a direct effect on the carbon dioxide release or absorption.”

The model accounts for different soil and vegetation types, the impact of climate and the inadvertent nitrogen deposition that results from fossil fuel and biomass burning.

Interestingly, warming temperatures in response to rising carbon dioxide levels could make more nitrogen available, said Xiaojuan Yang, a doctoral student in Jain’s lab. This factor must also be weighed in any calculation of net carbon dioxide load, she said.

“Previous modeling studies show that due to warming, the soil releases more carbon dioxide through increased decomposition,” she said. “But they are not considering the nitrogen effect. When the soil is releasing more CO2, at the same time more nitrogen is mineralized. This means that more nitrogen becomes available for plants to use.”

Increased nitrogen availability allows plants to uptake more carbon dioxide, a factor that mitigates, somewhat, the added burden of carbon dioxide in the atmosphere.

Even so, Jain said, the failure to look at the role of nitrogen in the terrestrial landscape means that countries may be overestimating the amount of carbon dioxide-uptake their forests provide.

Oak Ridge National Laboratory scientist Wilfred Post contributed to the research.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>