Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Woods Hole Research Center debuts new image mosaic that will strengthen global forest monitoring

30.11.2007
Much of the discussion at the upcoming United Nations Climate Change Conference in Bali, Indonesia, will focus on monitoring tropical deforestation and the critical role that remote sensing systems will play in the development of REDD (Reduced Emissions from Deforestation and Degradation) mechanisms – policies designed to compensate rainforest nations for avoiding deforestation.

Using synthetic aperture radar (SAR) data acquired over a six-week period by the Japanese Advanced Land Observing Satellite (ALOS), scientists at the Woods Hole Research Center have just completed the first-of-its-kind, large-scale, wall-to-wall image mosaic at 25 m resolution for a portion of the Amazon basin spanning some 400,000 square kilometers.

Images acquired globally over narrow timeframes provide for true “snapshots” of deforestation activities, giving leverage to monitoring programs that hinge on timely and accurate observations of forests throughout the world.

Dr. Josef Kellndorfer, who is leading the project for the Center, says, “The Japanese Space Agency JAXA has launched an amazing sensor which exhibits unprecedented geometric and radiometric accuracies allowing us to generate high quality cloud free radar image mosaics with nearly no user interaction required. The ALOS observation plan will ensure, that these high-resolution data are acquired several times per year for years to come. With a strong sensitivity of the ALOS radar imaging sensor to vegetation structure, this marks a new era in remote sensing of natural resources.”

The image mosaic is a composite of 116 individual scenes acquired by the Phased Array L-Band SAR (PALSAR) carried on board ALOS. The acquisition was made over the Xingu basin in Mato Grosso, Brazil, between June 8 and July 22, 2007. From the mosaic, Dr. Kellndorfer’s group has generated a preliminary land cover classification with emphasis on producing an accurate forest/nonforest map. In the forested areas, the sensitivity of the PALSAR data to differences in aboveground biomass is also being investigated in collaboration with the Amazon Institute of Environmental Research (IPAM).

“The area that is mapped with the mosaic of images centers on the headwaters of the Xingu River, one of the Amazon’s mighty tributaries. The indigenous groups, soy farmers, smallholders, and ranchers that live in this region are top candidates to receive payments for reducing their carbon emissions. Where this has previously taken us several months to prepare, this new mosaic took only a few days, a turnaround window that carries real significance.” says Woods Hole Research Center senior scientist Daniel Nepstad.

The mosaic marks the dawn of a new era in global Earth observation because it demonstrates the unprecedented ability of the ALOS/PALSAR to deliver high-resolution (~20 meters), regional- to continental-scale image acquisitions over narrow time frames (6-8 weeks) and through dense cloud cover and precipitation.

Ake Rosenqvist, who was instrumental in the design of the ALOS/PALSAR observation strategy at JAXA points out that “given the regional-scale nature of climate change and environmental degradation, the importance of undertaking systematic observations cannot be overly emphasized. With this in mind, the PALSAR observation strategy has been designed to provide consistent, wall-to-wall observations at fine resolution of all land areas on the Earth on a repetitive basis, in a manner that has earlier been conceived only for coarse and medium resolution instruments. ALOS is a pathfinder in this context and we hope that other space agencies and satellite providers will follow suit.”

Masanobu Shimada, who is the ALOS Science Project Manager at JAXA, states, “We are very pleased to have ALOS in orbit and operating exceptionally well. One of the main objectives of the ALOS mission is to support global forest monitoring needs. We are excited to see that the data are now being acquired operationally, and that important scientific results can be produced.”

Dr. Kellndorfer officially unveiled this new product at the international ALOS Principal Investigator symposium in Kyoto, Japan, on Monday, November 19. The mosaic and the implications of ALOS as an additional global forest monitoring tool for REDD negotiations at the UNFCC meeting in Bali are being shared with NGOs, governments, policymakers, and other organizations prior to the conference so that the findings can be included in preparations and proposals.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>