Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pine Is Ten Times As Sensitive As Maple

08.05.2002


Coniferous trees are widespread in Russia, especially in Siberia, where taiga extends over tens of millions of hectares. Cedars and pines grow also in the environs of cities and in city parks and suffer from human-induced changes in environment.



Of course, coniferous trees can withstand a low-level pollution. Acid gases or soil pollutants that trees absorb are actively transported and deposited in those parts of wood, which do not perform important functions, and some elements are removed with needles and root exudates. Trees are armed with several biochemical reactions preventing harmful oxidation processes. According to the data obtained in the Main Botanical Garden in Moscow, the ability of pine species to withstand the human-induced pollution decreases in the following range. Common pine (Pinus silvestris) is most sustainable; mountain pine (Pinus montana) and North American species - Labrador pine (Pinus banksiana) and Weymouth pine (Pinus strobus) - are less sustainable; cembra pine (Pinus cembra), Siberian cedar (Pinus sibirica), dwarf pine (Pinus pumila), and Korean pine (Pinus koraiensis) are most vulnerable.

Conifers are ten times as sensitive to the air pollution as foliage trees. Because of such a susceptibility to ecological changes, conifers are good objects for the biological monitoring of the environment. This method allows one to assess a combined impact of all toxic substances on live organisms. This is very advantageous in urban conditions, since the heterogeneity of the city climate, soil cover, topography, and other factors make it difficult to determine the degree of pollution and the level of toxicity of various substances in certain points within the town area. Such an assessment could not be based, e.g., only on the chemical analysis of gaseous pollutants, because the latter cannot characterize the transformation and migration of gases in different layers of the atmosphere. In this situation, the observation on plants that suffer from these gases is a better way of ecological control.


Pines from 20 to 25 years old growing in town Tomsk, in areas polluted to different degrees, were observed by research assistants from the Tomsk State University. They discovered that urban conditions cause structural defects and changes in main physiological and growth processes in coniferous trees. The photosynthesis efficiency is decreased by 25-30%, observed trees grow slower than similar conifers in the suburbs and have a distorted (split) upper part of the crown and a low-quality wood.
On the basis of assessing the state of coniferous trees in the area of the Baikal Lake, Dr. Mikhailova, the research assistant from the Siberian Institute of Plant Physiology and Biochemistry of the Russian Academy of Sciences, classified the state of conifers depending on the environmental conditions, in particular, on the air pollution by industrial gases. The pollution-induced sickness of trees develops in several stages. First, a small, but visible metabolic disorder appears. At a medium-level pollution, the disorder grows into a persistent chronic disease, the adaptive mechanisms do not work properly, and the tree growth is retarded. As pressing becomes stronger, the tree enters the phase of an irreversible degradation. And at the last stage, the tree slowly dies.

Plants are very vulnerable to high concentrations of atmospheric ozone. The study of the ozone influence on trees is hardly possible in natural conditions because of a high reactivity and a wide spectrum of impacts of this agent. In laboratory, special equipment allows to monitor the ozone concentration during the experiment. Scientists from the Institute of Atmospheric Optics (Siberian Division, Russian Academy of Sciences), the Tomsk State University, and the Institute of Forestry (Siberian Division, Russian Academy of Sciences) found that six-hour-long exposure of four-year-old Siberian cedars to an atmosphere with an increased ozone concentration (8 mg/m3) results in the decomposition of photosynthetic pigments. This effect is better expressed in the needles of rapidly growing cedars. Needles of slowly growing plant individuals are less sensitive to the stress. However, a low rate of growth is disadvantageous from the viewpoint of park designers.

To sum up, we may say that urban conditions are too difficult for pines and cedars. Their right place is taiga with a clean air that is never present in a large city. That is why pines, which are planted now by many people on lawns in front of their houses, get sick and die when very young.

Natalia Reznik | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>