Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover biological mechanism for enhanced carbon consumption in the ocean

12.11.2007
The world oceans are by far the largest sink of anthropogenic CO2 on our planet. Until now, they have swallowed almost half of the CO2 emitted through the burning of fossil fuels.

However, can the oceans continue to alleviate the steady rise in atmospheric CO2 in the future? Current models for the development of the global climate system do not incorporate the reaction of marine organisms nor the processes that they influence.

Professor Ulf Riebesell, marine biologist at IFM-GEOMAR in Kiel and the first author of the study, gives insight into the motivation for the research: “We need to learn a lot more about the biology of the oceans, because the organisms play a decisive role in the carbon cycle. How do they affect the chemical balance and what are their responses to the enormous environmental changes we are currently experiencing?” The Nature publication provides new insights into these effects and their dimension.

To investigate the biological processes and their potential changes with time, the scientists made use of an unusual experimental set up in the Raunefjord in Norway. Here, a series of nine mesocosms, enclosures manufactured from a specialized synthetic material and measuring 10 meters in depth, were used to isolate 27 cubic meters of natural fjord water. In the experimental design, Ulf Riebesell and his team maintained three enclosures at current CO2 conditions as a control, while they infused CO2 in the remaining mesocosms to simulate predicted concentrations for the year 2100 and the year 2150. The critters in the mesocosms responded quickly to the extra serving of CO2.

The higher the concentration of dissolved carbon dioxide, the faster the microalgae incorporated the greenhouse gas via photosynthesis. Can CO2 act as a fertilizer in the ocean? The scientists measured an increased uptake of up to 39% compared to current rates. Ulf Riebesell describes the reaction of his team: “We expected the organisms to show distinct reactions to changing CO2 conditions. What really surprised us, however, was the dimension of this effect. Basically, we can now say that the biology in the oceans is significantly affecting the global climate system.” In the final step of the experiment, the scientists wanted to find out what happens with the rapidly proliferating biomass. Again the experiments in the Raunefjord provided insights: the extra CO2 bound in organic matter sank to depth after the peak of the algal bloom.

The CO2 fertilization of marine plankton can have a positive effect on climate change in the future. The greenhouse gas consumed by plankton and removed from the surface ocean when the dying cells sink to depth makes way for the uptake of more CO2. In a way, the tiny organisms act as a biological conveyer belt for the transport of carbon dioxide out of the surface and into the deep ocean. What appears to be a blessing for the atmospheric greenhouse effect may prove to be a curse for deep ocean ecosystems. Decomposition of the increased biomass will consume more oxygen, a major problem for marine animals that occupy deep habitats. Another consequence of the biological conveyer belt is the accelerated rate of ocean acidification in the deep ocean due to more rapid transport of CO2 to depth. The authors also expect direct affects on marine organisms based on previous observations. Planktonic crustaceans that were fed with CO2-enriched microalgae displayed slower growth rates and were less proliferous.

Ulf Riebesell remarks on the consequences of the study: „Our results probably represent only the tip of the iceberg. I am certain that scientists will discover further biological feedback mechanisms in the near future. It is essential not only to identify and to understand these mechanisms, but also to quantify their effect on the global climate system, now and in the future. “

The experiments in Bergen were conducted in the framework of the research program CARBOOCEAN, funded by the European Union.

*Enhanced biological carbon consumption in a high CO2 ocean. Ulf Riebesell1, Kai Schulz1, Richard Bellerby2,3, Mona Botros1, Peter Fritsche1, Michael Meyerhöfer1, Craig Neill2, Gisle Nondal2,3, Andreas Oschlies1, Julia Wohlers1 & Eckart Zöllner1.

1.Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany
2.Bjerknes Centre for Climate Research in Bergen, Norway
3.Geophysical Institute, University of Bergen, Norway

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>