Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists enhance Mother Nature's carbon handling mechanism

08.11.2007
Taking a page from Nature herself, a team of researchers developed a method to enhance removal of carbon dioxide from the atmosphere and place it in the Earth's oceans for storage.

Unlike other proposed ocean sequestration processes, the new technology does not make the oceans more acid and may be beneficial to coral reefs. The process is a manipulation of the natural weathering of volcanic silicate rocks. Reporting in today's (Nov. 7) issue of Environmental Science and Technology, the Harvard and Penn State team explained their method.

"The technology involves selectively removing acid from the ocean in a way that might enable us to turn back the clock on global warming," says Kurt Zenz House, graduate student in Earth and planetary sciences, Harvard University. "Essentially, our technology dramatically accelerates a cleaning process that Nature herself uses for greenhouse gas accumulation."

In natural silicate weathering, carbon dioxide from the atmosphere dissolves in fresh water and forms weak carbonic acid. As the water percolates through the soil and rocks, the carbonic acid converts to a solution of alkaline carbonate salts. This water eventually flows into the ocean and increases its alkalinity. An alkaline ocean can hold dissolved carbon, while an acidic one will release the carbon back into the atmosphere. The more weathering, the more carbon is transferred to the ocean where some of it eventually becomes part of the sea bottom sediments.

"In the engineered weathering process we have found a way to swap the weak carbonic acid with a much stronger one (hydrochloric acid) and thus accelerate the pace to industrial rates," says House.

The researchers minimize the potential for environmental problems by combining the acid removal with silicate rock weathering mimicking the natural process. The more alkaline ocean can store carbon as bicarbonate, the most plentiful and innocuous form of carbon in the oceans.

According to House, this would allow removal of excess carbon dioxide from the atmosphere in a matter of decades rather than millennia.

Besides removing the greenhouse gas carbon dioxide from the atmosphere, this technique would counteract the continuing acidification of the oceans that threatens coral reefs and their biological communities. The technique is adaptable to operation in remote areas on geothermal or natural gas and is global rather than local. Unlike carbon dioxide scrubbers on power plants, the process can as easily remove naturally generated carbon dioxide as that produced from burning fossil fuel for power.

The researchers, Kurt House; Daniel P. Schrag, director, Harvard University Center for the Environment and professor of Earth and planetary sciences; Michael J. Aziz, the Gordon McKay professor of material sciences, all at Harvard University and Kurt House's brother, Christopher H. House, associate professor of geosciences, Penn State, caution that while they believe their scheme for reducing global warming is achievable, implementation would be ambitious, costly and would carry some environmental risks that require further study. The process would involve building dozens of facilities similar to large chlorine gas industrial plants, on volcanic rock coasts.

"This work shows how we can remove carbon dioxide on relevant timescales, but more work is be needed to bring down the cost and minimize other environmental effects," says Christopher H. House.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>