Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like it or not, uncertainty and climate change go hand-in-hand

29.10.2007
Despite decades of ever more-exacting science projecting Earth's warming climate, there remains large uncertainty about just how much warming will actually occur.

Two University of Washington scientists believe the uncertainty remains so high because the climate system itself is very sensitive to a variety of factors, such as increased greenhouse gases or a higher concentration of atmospheric particles that reflect sunlight back into space.

In essence, the scientists found that the more likely it is that conditions will cause climate to warm, the more uncertainty exists about how much warming there will be.

"Uncertainty and sensitivity have to go hand in hand. They're inextricable," said Gerard Roe, a UW associate professor of Earth and space sciences. "We're used to systems in which reducing the uncertainty in the physics means reducing the uncertainty in the response by about the same proportion. But that's not how climate change works."

Roe and Marcia Baker, a UW professor emeritus of Earth and space sciences and of atmospheric sciences, have devised and tested a theory they believe can help climate modelers and observers understand the range of probabilities from various factors, or feedbacks, involved in climate change. The theory is contained in a paper published in the Oct. 26 edition of Science.

In political polling, as the same questions are asked of more and more people the uncertainty, expressed as margin of error, declines substantially and the poll becomes a clearer snapshot of public opinion at that time. But it turns out that with climate, additional research does not substantially reduce the uncertainty.

The equation devised by Roe and Baker helps modelers understand built-in uncertainties so that the researchers can get meaningful results after running a climate model just a few times, rather than having to run it several thousand times and adjust various climate factors each time.

"It's a yardstick against which one can test climate models," Roe said.

Scientists have projected that simply doubling carbon dioxide in the atmosphere from pre-Industrial Revolution levels would increase global mean temperature by about 2.2 degrees Fahrenheit. However, that projection does not take into account climate feedbacks – physical processes in the climate system that amplify or subdue the response. Those feedbacks would raise temperature even more, as much as another 5 degrees F according to the most likely projection. One example of a feedback is that a warmer atmosphere holds more water vapor, which in itself is a greenhouse gas. The increased water vapor then amplifies the effect on temperature caused by the original increase in carbon dioxide.

"Sensitivity to carbon dioxide concentration is just one measure of climate change, but it is the standard measure," Roe said.

Before the Industrial Revolution began in the late 1700s, atmospheric carbon dioxide was at a concentration of about 280 parts per million. Today it is about 380 parts per million and estimates are that it will reach 560 to 1,000 parts per million by the end of the century.

The question is what all that added carbon dioxide will do to the planet's temperature. The new equation can help provide an answer, since it links the probability of warming with uncertainty about the physical processes that affect how much warming will occur, Roe said.

"The kicker is that small uncertainties in the physical processes are amplified into large uncertainties in the climate response, and there is nothing we can do about that," he said.

While the new equation will help scientists quickly see the most likely impacts, it also shows that far more extreme temperature changes – perhaps 15 degrees or more in the global mean – are possible, though not probable. That same result also was reported in previous studies that used thousands of computer simulations, and the new equation shows the extreme possibilities are fundamental to the nature of the climate system.

Much will depend on what happens to emissions of carbon dioxide and other greenhouse gases in the future. Since they can remain in the atmosphere for decades, even a slight decrease in emissions is unlikely to do more than stabilize overall concentrations, Roe said.

"If all we do is stabilize concentrations, then we will still be risking the highest temperature change shown in the models," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>