Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like it or not, uncertainty and climate change go hand-in-hand

29.10.2007
Despite decades of ever more-exacting science projecting Earth's warming climate, there remains large uncertainty about just how much warming will actually occur.

Two University of Washington scientists believe the uncertainty remains so high because the climate system itself is very sensitive to a variety of factors, such as increased greenhouse gases or a higher concentration of atmospheric particles that reflect sunlight back into space.

In essence, the scientists found that the more likely it is that conditions will cause climate to warm, the more uncertainty exists about how much warming there will be.

"Uncertainty and sensitivity have to go hand in hand. They're inextricable," said Gerard Roe, a UW associate professor of Earth and space sciences. "We're used to systems in which reducing the uncertainty in the physics means reducing the uncertainty in the response by about the same proportion. But that's not how climate change works."

Roe and Marcia Baker, a UW professor emeritus of Earth and space sciences and of atmospheric sciences, have devised and tested a theory they believe can help climate modelers and observers understand the range of probabilities from various factors, or feedbacks, involved in climate change. The theory is contained in a paper published in the Oct. 26 edition of Science.

In political polling, as the same questions are asked of more and more people the uncertainty, expressed as margin of error, declines substantially and the poll becomes a clearer snapshot of public opinion at that time. But it turns out that with climate, additional research does not substantially reduce the uncertainty.

The equation devised by Roe and Baker helps modelers understand built-in uncertainties so that the researchers can get meaningful results after running a climate model just a few times, rather than having to run it several thousand times and adjust various climate factors each time.

"It's a yardstick against which one can test climate models," Roe said.

Scientists have projected that simply doubling carbon dioxide in the atmosphere from pre-Industrial Revolution levels would increase global mean temperature by about 2.2 degrees Fahrenheit. However, that projection does not take into account climate feedbacks – physical processes in the climate system that amplify or subdue the response. Those feedbacks would raise temperature even more, as much as another 5 degrees F according to the most likely projection. One example of a feedback is that a warmer atmosphere holds more water vapor, which in itself is a greenhouse gas. The increased water vapor then amplifies the effect on temperature caused by the original increase in carbon dioxide.

"Sensitivity to carbon dioxide concentration is just one measure of climate change, but it is the standard measure," Roe said.

Before the Industrial Revolution began in the late 1700s, atmospheric carbon dioxide was at a concentration of about 280 parts per million. Today it is about 380 parts per million and estimates are that it will reach 560 to 1,000 parts per million by the end of the century.

The question is what all that added carbon dioxide will do to the planet's temperature. The new equation can help provide an answer, since it links the probability of warming with uncertainty about the physical processes that affect how much warming will occur, Roe said.

"The kicker is that small uncertainties in the physical processes are amplified into large uncertainties in the climate response, and there is nothing we can do about that," he said.

While the new equation will help scientists quickly see the most likely impacts, it also shows that far more extreme temperature changes – perhaps 15 degrees or more in the global mean – are possible, though not probable. That same result also was reported in previous studies that used thousands of computer simulations, and the new equation shows the extreme possibilities are fundamental to the nature of the climate system.

Much will depend on what happens to emissions of carbon dioxide and other greenhouse gases in the future. Since they can remain in the atmosphere for decades, even a slight decrease in emissions is unlikely to do more than stabilize overall concentrations, Roe said.

"If all we do is stabilize concentrations, then we will still be risking the highest temperature change shown in the models," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>