Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt professor says harmful byproducts of fossil fuels could be higher in urban areas

24.10.2007
3-year project applies on a large scale a method for tracing sources of nitrate in rainfall

Nitrogen oxides, the noxious byproduct of burning fossil fuels that can return to Earth in rain and snow as harmful nitrate, could taint urban water supplies and roadside waterways more than scientists and regulators realize, according to research published Oct. 20 in the online edition of the journal Environmental Science and Technology.

The three-year study, led by Emily Elliott, a professor of geology and planetary science in the University of Pittsburgh’s School of Arts and Sciences, recommends that urban areas and roadways be specifically monitored for nitrogen deposition. Nitrogen oxides can contribute to a wide variety of environmental and health ills. Nitrate—which forms when exhaust from vehicles and smokestacks oxidizes in the atmosphere—is an important contributor to acid rain and can result in stream and soil acidification, forest decline, and coastal water degradation.

Elliott and her colleagues conducted the first large-scale application of a method for determining the source of atmospheric nitrate on rain and snow samples from 33 precipitation collection sites across the Midwestern and Northeastern United States, including Pennsylvania. The sites belong to the National Atmospheric Deposition Program (NADP), a cooperative of private organizations and U.S. government agencies that analyzes precipitation for chemicals such as nitrogen, sulfur, and mercury from more than 250 sites in the United States, Puerto Rico, and the Virgin Islands.

Although vehicles are the single largest source of nitrogen oxides in this region, the researchers found by analyzing the stable isotope composition of nitrate that the primary source of nitrate in their samples were stationary sources, such as power plants and factories, located hundreds of miles away. Stationary sources pump pollutants high into the atmosphere where they can be transported for long distances before falling to the ground. Vehicle exhaust is released close to the ground and more likely deposited over shorter distances near roadways. Most monitoring sites in the NADP network are deliberately located in relatively rural settings away from urban, industrial, or agricultural centers.

The amount of nitrate pouring over the cities and busy roadways thick with vehicles could be higher than monitoring data at most NADP sites reflect, and it is possible that a significant amount of this atmospheric nitrate finds its way into sensitive water supplies, such as the Ohio River or Chesapeake Bay. In aquatic ecosystems, excess nitrate can promote an overgrowth of oxygen-consuming algae and lead to an oxygen deficiency in the water known as hypoxia. Hypoxia kills marine creatures and creates “dead zones” akin to the lifeless area of the Gulf of Mexico at the mouth of the Mississippi River. Determining the fate of major sources of nitrogen emissions is necessary to develop sound regulatory and mitigation strategies for both air and water quality, Elliott said.

“Our results highlight the need to improve our understanding of the fate of vehicle emissions—one way we can do this is by expanding monitoring networks to include more urban sites,” Elliott said, adding that both vehicle and stationary sources are major contributors to air pollution in the region studied.

Elliott said that future research will further characterize the isotopic ratios of nitrogen oxides from various emission sources and quantify how these values change during transport and with different emission controls. She is looking for industrial partners who can provide samples from smokestacks for analysis. Additionally, Elliott is interested in establishing an urban precipitation monitoring site in Pittsburgh to assess pollution sources that contribute to nitrate deposition in the Pittsburgh region.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>