Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North Atlantic slows on the uptake of CO2

23.10.2007
Further evidence for the decline of the oceans’ historical role as an important sink for atmospheric carbon dioxide is supplied by new research by environmental scientists from the University of East Anglia.

Since the industrial revolution, much of the CO2 we have released into the atmosphere has been taken up by the world’s oceans which act as a strong ‘sink’ for the emissions.

This has slowed climate change. Without this uptake, CO2 levels would have risen much faster and the climate would be warming more rapidly.

A paper in the Journal of Geophysical Research by Dr Ute Schuster and Professor Andrew Watson of UEA’s School of Environmental Sciences again raises concerns that the oceans might be slowing their uptake of CO2.

Results of their decade-long study in the North Atlantic show that the uptake in this ocean, which is the most intense sink for atmospheric CO2, slowed down dramatically between the mid-nineties and the early 2000s.

A slowdown in the sink in the Southern Ocean had already been inferred, but the change in the North Atlantic is greater and more sudden, and could be responsible for a substantial proportion of the observed weakening.

The observations were made from merchant ships equipped with automatic instruments for measuring carbon dioxide in the water. Much of the data has come from a container ship carrying bananas from the West Indies to the UK, making a round-trip of the Atlantic every month. The MV Santa Maria, chartered by Geest, has generated more than 90,000 measurements of CO2 in the past few years.

The results show that the uptake by the North Atlantic halved between the mid-90s, when data was first gathered, and 2002-05.

“Such large changes are a tremendous surprise. We expected that the uptake would change only slowly because of the ocean’s great mass,” said Dr Schuster.

“We are cautious about attributing this exclusively to human-caused climate change because this uptake has never been measured before, so we have no baseline to compare our results to. Perhaps the ocean uptake is subject to natural ups and downs and it will recover again.”

But the direction of the change was worrying, she added, and there were some grounds for believing that a ‘saturation’ of the ocean sink would start to occur.

“The speed and size of the change show that we cannot take for granted the ocean sink for the carbon dioxide. Perhaps this is partly a natural oscillation or perhaps it is a response to the recent rapid climate warming. In either case we now know that the sink can change quickly and we need to continue to monitor the ocean uptake,” said Prof Watson.

Annie Ogden | alfa
Further information:
http://www.agu.org/journals/jc

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>