Scientists in first global study of ‘poison’ gas in the atmosphere

Phosgene was still stockpiled in military arsenals well after the Second World War, but its continued presence in the atmosphere today is due to man-made chlorinated hydrocarbons used in the chemical industry.

A team, including Professor Peter Bernath, of the Department of Chemistry at the University of York, has carried out the first study of the global distribution of the gas. The team also involved scientists from the Universities of Waterloo and Toronto in Canada, NASA’s Jet Propulsion Laboratory and the New Mexico Institute of Mining and Technology in the USA.

Between February 2004 and May 2006, they used the Canadian Atmospheric Chemistry Experiment (ACE) satellite to measure the incidence of the gas. The research, which was financed by the Canada Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada, is published in the latest edition of Geophysics Research Letters.

The scientists discovered that the main atmospheric concentration of the gas was above the Equator, though it was present in some quantity in all latitudes. They found that levels of phosgene in the atmosphere had reduced since previous studies in the 1980s and 1990s, though its continued presence is a contributor to ozone depletion.

Phosgene plays a major role in the preparation of pharmaceuticals, herbicides, insecticides, synthetic foams, resins and polymers, though its use is being reduced.

Professor Bernath said: ”There is a small, but not negligible, concentration of phosgene in the troposphere. Chlorinated hydrocarbons don't occur in nature but as chlorinated solvents they are used by industry. They are short-lived and they decay rapidly, but they decay into phosgene.

“It's very toxic and pretty nasty stuff – its reputation is well deserved. Considering the health hazards associated with phosgene, the chemical industry is trying to find substitutes to eliminate its use. But the use of chlorinated hydrocarbons is being reduced because of the legal restrictions of the Montreal Protocol, so phosgene is also decreasing.”

Higher up in the atmosphere phosgene can be slowly oxidized by ultraviolet rays, and so it continues to play a role in the depletion of the ozone layer.

Media Contact

David Garner alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors