Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Refugia of the Brazilian Atlantic rainforest could be the basis for its regeneration

06.09.2007
During the last glaciation, which ended about 10 000 years Before Present (BP), the Brazilian Atlantic forest extended over all the eastern side of the country, covering more than 1 200 000 km², 15% of Brazil’s territory.

Now only 95 000 km² of this natural habitat survives, just 8% of its initial extent. It is still a large biodiversity reservoir in Brazil, second only to the Amazonian forest.

On one hectare of Atlantic forest the biologists recorded over 450 different tree species. But deforestation and intensive farming methods make this tropical forest one of Earth’s most seriously threatened ecosystems. In the states of São Paulo and Minas Gerais, regions where agriculture has developed strongly in recent years, the forest is largely fragmented, represented only as small blocks situated on the abrupt slopes which plunge down towards the Atlantic.

With the objective of analysing the changes that have taken place in this ecosystem over the Quaternary era, IRD researchers and counterparts from the University of São Paulo put together the results from three scientific disciplines (botany, palynology, genetics) applied to three species of the tree genus Podocarpus: P. sellowii, P. lambertii and P. brasiliensis. These tropical trees belong to the conifer family. They are good indicators of geographical evolution of the Atlantic forest with time, seeing that the Brazilian species are endemic to this natural habitat. Moreover, pollen grains from the genus Podocarpus have a typical small bladder-like morphology and stay intact for a long time in sediments. These two characteristics make them good candidates for palynological studies.

The team recorded and then collected available plant material from different sites where Atlantic forest stands are still present. This involved 26 sampling points spread over a rectangle 4000 km long by 500 km wide corresponding to the whole of the area of distribution of this ecosystem. They corresponded to 26 different populations of Podocarpus.

This first investigation stage allowed subsequent accurate genetic characterization of each population. In parallel, six sedimentary cores were taken at different latitudes where Atlantic forest still grows so that analysis could be made of the frequency of pollen grains belonging to the Podocarpus genus contained in the various samples collected. The borehole sunk at Colônia (see Map) in the state of São Paulo yielded a core showing that the frequency of these pollen grains fluctuated with time; the phases of expansion and regression of this taxon (3) succeeded one another for periods of varying length. Evidence for a rise in frequency of Podocarpus pollen grains was found for periods of between 60 000 and 45 000 years BP, then between 29 000 and 21 000 years BP in the south of Brazil and between 16 000 and 15 000 years BP in the Nordeste region. These fluctuating rises which occurred during times of glaciation would correspond to phases of expansion of the Atlantic forest in these regions.

In order to test this hypothesis, the Franco-Brazilian team used techniques from molecular biology. For each of the 26 pre-selected populations, the researchers collected leaves of five individual trees of the Podocarpus genus from which they extracted DNA. Nucleotide sequence amplification was performed, then phylogenetic analysis. Comparison was made between that analysis and the level of genetic differentiation between each population of Podocarpus. The scientists thus succeeded in delimiting three large centres of original colonization distributed according to latitude.

The multidisciplinary approach also showed that the expansion of tropical conifer populations never occurred during interglacial periods, in contrast to what usually happened in our temperate latitudes. In the tropics, the populations of Podocarpus that make up the Atlantic forest in fact gained ground in glacial periods owing to an increase in humidity and a cooling of temperatures. At present, in the Nordeste region where a more arid climate prevails, this humid tropical forest occurs in the form of small isolated populations. Nevertheless, it has not always been like that. In that part of the country, the study confirmed the notion that a dense rainforest developed at 15 000 years BP. In the space of about 10 years, its extremely rapid expansion, over an area twice the size of France, was made possible only by the presence of a mosaic of a multitude of patches of forest, now dispersed sparsely over this arid terrain.

Predictions for climate changes for the next few decades envisage an increase in the duration and intensity of periods of drought in the intertropical regions, as in Nordeste. If this trend persists, the protection of such surviving areas of Brazil’s Atlantic forest, these refugia, will become essential for the conservation of this ecosystem

Gregory Flechet - IRD

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2007/fas273.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>