Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolves find happy hunting grounds in Yellowstone National Park

03.09.2007
If Mark Boyce could converse with elk, he might give them a word of advice: avoid open, flat, snowy areas near rivers and roads.

A biological scientist at the University of Alberta, Boyce analyzed 774 wolf-elk kill sites and concluded that spatial patterns of predation between wolves and elk are more strongly influenced by landscape features than by wolf distribution.

"We found that even though wolf and elk populations overlapped in many areas of our study, the kill sites did not correlate with the areas of overlap as much as they were consistent with certain landscape features, such as proximity to roads," Boyce said.

The research results were published recently in the academic journal Ecology Letters.

Boyce and his colleagues studied the wolf-elk interactions over a period of 10 consecutive winters in a northern range of the Yellowstone National Park in the U.S.

The area has been of special interest to researchers since 14 wolves from the Canadian Rockies were introduced to the park in 1995. Wolves had been extirpated from Yellowstone in the 1930s, and some people speculated the re-introduced wolves would doom the park's elk population. However, while the number of wolves on Yellowstone's northern range has since grown to 84, the number of elk has not declined appreciably.

"We've found that the availability of refuge areas for elk, and their ease of accessing them, should buffer the elk population in the park from extreme levels of predation," Boyce said.

Boyce added that wolves are inefficient predators, with low rates of hunting success—usually around 20 per cent—which is due, in part, to the large size and defensive capabilities of elk, their main prey. Prime-age adult elk are largely invulnerable to predation from wolves, which are highly selective and target the young, old or weak.

"Our findings suggest that landscape features may often 'tip the balance' in predator-prey outcomes, thus influencing post-encounter outcomes," Boyce said.

Boyce and colleagues noted that "browse communites"—foraging areas in open, flat landscape near roads or rivers (which can cut off escape routes)—offer the greatest risk of wolf predation for elk. Also, deep snowy areas, which are much harder for the heavy, hoof-legged elk to move through than the lighter, wide-pawed wolves, are also dangerous.

The great challenge for the elk, however, is that the risky foraging areas provide sustenance during the critical winter months, when the elk experience shrinking fat reserves.

"Our study makes clear that elk in winter face a clear trade-off between forage quality and predation risk. How elk perceive and manage the trade-off between food and safety will ultimately determine if they will survive," Boyce said.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>