Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster change means bigger problems

27.08.2007
The debate about what constitutes “dangerous anthropogenic interference with the climate” has almost exclusively focused on how much the temperature can be allowed to increase. But we have perhaps just as much reason to be concerned about how quickly these changes take place.

The UN Framework Convention on Climate Change (UNFCCC) aims to avoid what is called “dangerous anthropogenic interference with the climate system”.

However, there is no guarantee that the level of climate change – how much the temperature increases in the future – is the only thing we should be worried about. How quickly the changes take place can also mean a lot for how serious the consequences will be. This was already acknowledged when the UNFCCC was signed in 1992. It says that we must stabilize the concentrations of greenhouse gases in the atmosphere within a time period that allows ecosystems to adapt and economic development to continue, and that ensures that food production will not be threatened. This focus on rate of change has, however, not been reflected to any noticeable degree among either scientists or politicians.

There are a few studies that focus on the consequences of the rate of climate change. Most of these are ecological studies. They leave no doubt that the expected rate of change during this century will exceed the ability of many animals and plants to migrate or adapt. Leemans and Eickhout (2004) found that adaptive capacity decreases rapidly with an increasing rate of climate change. Their study finds that five percent of all ecosystems cannot adapt more quickly than 0.1 °C per decade over time. Forests will be among the ecosystems to experience problems first because their ability to migrate to stay within the climate zone they are adapted to is limited. If the rate is 0.3 °C per decade, 15 percent of ecosystems will not be able to adapt. If the rate should exceed 0.4 °C per decade, all ecosystems will be quickly destroyed, opportunistic species will dominate, and the breakdown of biological material will lead to even greater emissions of CO2. This will in turn increase the rate of warming.

According to the Intergovernmental Panel on Climate Change (IPCC), the global average temperature today is increasing by 0.2 °C per decade.

There is also a risk that rapid climate change will increase the likelihood of large and irreversible changes, such as a weakening of the Gulf Stream and melting of the Greenland ice sheets. Rapid change also increases the risk of triggering positive feedback mechanisms that will increase the rate and level of temperature change still more.

We know far less about the consequences of rate of temperature increase than we do about the level. Nevertheless, we know enough to say that if we are to avoid dangerous climate change, then we should also be concerned about how quickly it occurs. This can have important implications for which climate measures we should implement. If we set a long-term climate goal – such as 2 °C – there will be many different emissions paths we could take to reach this goal. But these emissions paths can differ to a relatively large degree with respect to how quickly the changes will take place – especially over the next few decades.

Focusing on the rate of climate change can imply that we should concentrate more on the short-lived greenhouse gases – such as methane and tropospheric ozone – and particles with a warming effect, such as soot (black carbon). It can also imply a greater focus on the medium-term (the next few decades), since the fastest changes could occur around that time.

Petter Haugneland | alfa
Further information:
http://www.cicero.uio.no/klima/article.asp?id=5690&lang=en

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>