Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change isolates Rocky Mountain butterflies

15.08.2007
Expanding forests in the Canadian Rocky Mountains are slowly isolating groups of alpine butterflies from each other, which may lead to the extinction of the colourful insects in some areas, says a new study from the University of Alberta.

A rising tree line in the Rockies due to global warming, and a policy not to initiate "prescribed burns" (intentionally started, controlled fires) in order to manage forest growth, has created the tenuous condition for the alpine butterflies, said Jens Roland, a biological scientist at the University of Alberta.

The alpine Apollo butterfly (Parnassius) inhabits open meadows because they, like other types of butterflies, need sunlight to generate enough body heat in order to fly, and forests are generally too shady for them and inhibit their ability to move.

However, expanding forests are pinching off the Parnassius from their neighbors in nearby meadows.

"The risk of local extinction and inbreeding depression will increase as meadows shrink, the population sizes decrease and the populations become more isolated," Roland said.

"The gene pool of this species is getting more and more fragmented, and gene flow is reduced, which means these populations are more vulnerable," he added.

One particularly cold winter or summer season may be enough to wipe out an entire meadow of Parnassius, said Roland, who is the lead author of a paper on this research that appears today in the Proceedings of the National Academy of Sciences.

Roland also said the Parnassius are not currently a threatened species, but they and smaller species native to Rocky Mountain meadows, including some insects and rodents, will suffer "several consequences" if forests continue to expand unchecked.

"Often forest management practice is led by the needs of larger species, such as mountain sheep, elk and grizzly bears, while the interests of the smaller species, such as butterflies, are overlooked," he said.

Prescribed burns, which protect and create meadows and generally foster diversity in forests, are undertaken in the Canadian Rocky Mountain national parks but are rare outside of them, Roland said.

Roland has completed earlier studies that showed expanding forests are restricting Parnassius's movements in parts of the Rocky Mountains. He feels his latest study is a natural extension of his previous work.

"It's important to study movement among populations that are becoming more and isolated due to shrinking habitats; but, ultimately, we need to study the population dynamics to find out if the habitat allows the species to reproduce and persist," Roland said.

"This latest study shows that as populations function with less synchrony and become more independent of each other—as we've shown the Parnassius is becoming in certain areas in the Canadian Rockies—the local extinction rate of small populations will increase," he added.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>