Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wider buffers are better

01.08.2007
When protecting wetlands from nitrogen pollution, an EPA study points to wider, vegetated borders around streams as most effective

Excess nitrogen caused by fertilizers, animal waste, leaf litter, sewer lines, and highways is responsible for contaminating groundwater. It can also cause human health risks when found in drinking water and oxygen depleted water bodies endangering animals that drink from them. Establishing Riparian buffers is considered a best management practice (BMP) by State and Federal resource agencies for maintaining water quality, and they may be especially critical in controlling amounts of human produced nitrogen.

Scientists at the U.S. Environmental Protection Agency collected data on the buffers along with nitrogen concentration in streams and groundwater to identify trends between nitrogen removal and buffer width, water flow path and vegetation. They found wide buffers (>50 meters) removed more nitrogen than narrow buffers (0-25 meters). Buffers of different vegetation types were equally effective but herbaceous and forest vegetation were more effective when wider. Removal of nitrogen within the water was efficient, but not related with buffer width; however removal on the water surface was related to buffer width. Nitrate nitrogen (sometimes used in fertilizer) did not differ by width, flow path or vegetation type. Results from the study are published in the July-August 2007 issue of the Journal of Environmental Quality.

The study suggested that buffer width is important for managing nitrogen in watersheds. Other factors such as soil saturation, groundwater flow paths, and subsurface chemical/organism relations are important for governing nitrogen removal in buffers. Vegetation type also may be an important factor in certain landscapes and hydrologic settings where forested buffers may prevent nitrogen in deep groundwater or contribute more organic carbon in streams. Riparian buffers of herbaceous vegetation or a mix with forest vegetation were found to be effective only when wider.

Riparian services provide numerous ecosystem services beyond nitrogen removal, and although buffer width, dimension, and vegetation type provide benefits such as stream shading and water temperature maintenance, fish and wildlife habitat, or sediment control; there may be other buffer characteristics more favorable in removing nitrogen. In any case, watershed nutrient management efforts also must include control and reduction of specific and general sources of nitrogen from atmospheric, land, and water inputs.

Research is ongoing at the U.S. Environmental Protection Agency to assess the nutrient removal capacity of riparian buffers. Because buffers are often degraded or removed due to land use change (e.g. agriculture and urbanization), there is need for further research to identify the most effective methods for restoration. This could lead to the enhanced nutrient removal and optimal riparian areas needed for restoration to have the greatest impact with minimum resources spent.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/36/5/1368

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>