Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fisheries forecasting in the Niger inner delta

27.03.2002


The hydrological regime of the inner delta of the River Niger, situated in Mali, is subject to strong annual and indeed intra-annual variability. This delta ecosystem has a characteristic feature, a three-phase cycle. The first, a period of flood, starts in July marking the beginning of the cycle; then, after several months of rising water-levels, the flood recedes, between November and January; finally, a period of low water prevails between March and June.



The river’s various fish species are adapted to this cycle of alternating conditions. Feeding, growth and mortality depend on that rhythm. The flood scatters the fish away from the river bed and brings abundant food. It provides refuge areas, environments where reproduction can take place undisturbed. Growth then proceeds until the waters are in recession, a period of high natural mortality. Fishing effort has to follow the rhythm set by the succession of flood and recession. Most campaigns are concentrated in the period of flood retreat which heralds the return of fish into the fluvial zone and their unavoidable movement through the channels fishermen know well – and when their capturability is highest. Activity diminishes and the season ends with the onset of the next flood, when again the fish are dispersed into flooded areas.

Fishing activity is therefore dependent on the hydrological seasons. Two measurable hydrological parameters can express these: rainfall and river discharge. IRD scientists have sought to determine the extent to which these two variables can provide the basis for a model for predicting annual capturable fish stocks. The team focused first on defining which of the indicators was most pertinent, secondly on finding the number of years’ worth of data necessary for obtaining a reliable forecast.


No significant relationship was found between fishing and rainfall.1 This established, the investigation turned to the other parameter, the Niger river discharge. It appeared to correlate well with the volume of catches, which increased in proportion to the flood intensity. Two hydrological stations in Mali have been recording discharge rates since the beginning of the XXth century: Mopti, in the middle zone of the delta, and Koulikoro, upstream of it. Both these stations supply the necessary data, but Koulikoro’s site further upstream is more convenient. The Niger’s bed there is narrower and discharges are greater, rendering small changes easier to detect and record with finer accuracy. The flood peak occurs in September at that point, one month earlier than at Mopti. The Koulikoro station can hence also provide data sooner and potential catch estimates can be calculated earlier.

An important finding is that only two years of data are required for a reliable prediction to be made. An underlying biological factor is that 70% of the fish caught in the inner delta are less than a year old indicating that they arrived with the last flood, or with the previous one at the earliest.

The model in the end is extremely simple and involves just two easily recorded variables: the average discharge between July and September of the year in course and the same parameter between July and December of the previous year. So constructed it can predict the catches from September, 2 months before the start of the fishing season which runs from November to May. It can also bring into relief the immediate impact of any unusually smaller-scale flood. An intensive catch rate in one fishing season reduces the fish to a population composed mainly of juveniles (less than a year old). If a flood is not strong enough to allow renewal, the following season’s stocks will be depleted and the catches poorer.

This new forecasting model has proved to be extremely useful for giving warnings of insufficiency or overabundance of fish resources without the need for complex modelling systems. Its predictions could be published in the newsletter of the Fisheries observatory and distributed regularly throughout the region. With further development, the model could in the future help define –and hence predict- the places over the delta where fish are most abundant. It could then become an important tool in overall fisheries management.

1 Probably owing to exhaustion of the groundwater sources; any rainfall would be taken up in replenishing the water table rather than in increasing water volume in the River Niger.

Marie-Lise Sabrie | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>