Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Piecing together the cyanobacteria puzzle

12.07.2007
Blue green algae are significant species in the global carbon cycle because they transform nitrogen gas from the atmosphere into a useable nutrient, enabling photosynthesis in nutrient-poor waters.

Using NanoSIMS (high- resolution secondary ion mass spectrometer), Lawrence Livermore National Laboratory, USC and Portland State University scientists showed that they could image and track nutrient uptake in blue green algae at the nanoscale. The new method should help to clear up the age-old puzzle of how different species of blue green algae can “fix” or take up atmospheric nitrogen and carbon in a single cell organism. Carbon fixation during photosynthesis produces oxygen, which inhibits nitrogen fixation.

Different species of blue green algae solve the problem in different ways and scientists still don’t understand how some of the most important species can get both of these jobs done.

To develop the new method, the researchers studied the freshwater algae, Anabaena oscillarioides, which separates the two processes into adjacent cells that share the products. LLNL researchers Peter Weber, Jennifer Pett-Ridge, Stewart Fallon and Ian Hutcheon used NanoSIMS to track the uptake and movement of carbon and nitrogen inside two types of cells in the algae: vegetative cells, which perform carbon fixation, and heterocysts, thick-walled relatives that pull in nitrogen.

NanoSIMS provides the ability to map distributions of elements and isotopes with 50-100-nanometer resolution. The device allowed the scientists to measure the carbon and nitrogen uptake and subsequent distribution at the cellular and subcellular level.

“The method shows the dynamics of resource uptake and redistribution down to the level of sub-micron nitrogen storage and cell wall formation during cell division,” Weber said.

The researchers used stable isotope tracers in nitrogen and carbon dioxide gases to track nitrogen and carbon fixation. After a few hours of incubation, vegetative cells exhibited a large enrichment in carbon and nitrogen isotopes because of active carbon and nitrogen uptake and intercellular exchange. During photosynthesis, most of the newly fixed carbon was allocated to vegetative cells because they are rapidly dividing, while heterocysts require very little carbon because they are non-growing cells.

The NanoSIMS images showed that mature heterocysts are distinguishable from the vegetative cells based on their size, shape and intercellular distance.

The method also showed that newly fixed nitrogen levels are higher in vegetative cells than in mature heterocysts.

“We were able to see on a cell by cell basis how newly fixed nitrogen is rapidly exported from the heterocysts to vegetative cells, keeping pace with the nitrogen demands of the growing and dividing vegetative cells,” Weber said. “Now we can take these results and apply them to poorly understood species.”

USC’s Kenneth Nealson predicts that NanoSIMS opens up a whole new field of study.

“You can use this technology to look at things going on inside the cell,” he said. “This is going to change the way that we do a lot of microbiology.”

The research appears in the latest issue of The International Society for Microbial Ecology (ISME) Journal.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>