Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat captures first image of Sargassum from space

06.06.2007
Sargassum seaweed, famous in nautical lore for entangling ships in its dense floating vegetation, has been detected from space for the first time thanks to an instrument aboard ESA’s environmental satellite, Envisat. The ability to monitor Sargassum globally will allow researchers to understand better the primary productivity of the ocean and better predict climate change.

Using optical radiance data from the Medium Resolution Imaging Spectrometer (MERIS) aboard Envisat, Dr Jim Gower and Stephanie King of the Canadian Institute of Ocean Sciences and Dr Chuamin Hu of the US University of South Florida were able to identify extensive lines of floating Sargassum in the western Gulf of Mexico in the summer of 2005.


Sargassum seaweed has been detected from space for the first time using optical radiance data from the Medium Resolution Imaging Spectrometer (MERIS) aboard Envisat. The ability to monitor Sargassum globally will allow researchers to understand better the primary productivity of the ocean and better predict climate change. Credits: ESA

"This appears to be the first report of a satellite image of Sargassum," Gower said. "It is usually associated with the area of the North Atlantic known as the Sargasso Sea after the Sargassum encountered there by early explorers. Our observations of Sargassum lines extending over large areas of the Gulf show that in this area and season it represents a significant fraction of marine primary productivity."

Marine primary production is the process by which floating vegetation, such as phytoplankton and seaweed, absorb atmospheric carbon dioxide through photosynthesis and convert it into organic carbon. By absorbing half of the carbon dioxide emitted into the atmosphere, the oceans have a profound influence on climate, making them major areas of interest for climate modellers.

The discovery was made using the MERIS maximum chlorophyll index (MCI) which provides an assessment of the amount of chlorophyll in vegetation to produce detailed images of chlorophyll per unit area. MERIS is uniquely suited for this because it provides images of above-atmosphere spectral radiance in 15 bands, including three bands at wavelengths of 665, 681 and 709 nanometres in order to measure the fluorescence emission from chlorophyll a.

Chlorophyll is the green photosynthetic compound in plants that captures energy from sunlight necessary for photosynthesis. The amount of chlorophyll present in vegetation plays an important role in determining how healthy it is. Accurately monitoring chlorophyll from space, therefore, provides a valuable tool for modelling primary productivity.

"The 709 band used by MERIS is not present on other ocean-colour sensors. It was essential to our detecting Sargassum," Gower said. "The MCI index has allowed us to find so many interesting things, including Sargassum and Antarctic super blooms. It really gives us a new and unique view of the Earth."

Gower and King are now combining data from MERIS with a sophisticated processing algorithm and powerful Grid computing to broaden this new view. The basic principle behind Grid computing is that anything one computer can do, a pool of computers can do faster and better, enabling the solution of massively complex tasks beyond the capabilities of a single machine or local network.

By using Grid technology, Gower and King intend to compute 5-years worth of MERIS data to determine global estimates of Sargassum biomass and its contribution to ocean productivity. "So far, we have found two things (Sargassum and Antarctic superblooms) that have never been seen from space before," said King. "It is really very exciting."

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMHO6ARR1F_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>