Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sediment microbial fuel cells get a nutritional boost

05.06.2007
Discarded crab and lobster shells may be the key to prolonging the life of microbial fuel cells that power sensors beneath the sea, according to a team of Penn State researchers.

To produce energy, microbial fuel cells need organic material for the microbes to consume. However, deep sea sediments can be surprisingly devoid of organic material because living things in the photic zone – the area where light penetrates the water – are continuously recycled and little falls to the ocean floor. An absence of organics limits the lifetime of marine microbial fuel cells.

The researchers include chitin – processed crustacean shells – in a pillow-like anode made of carbon cloth. The anode is placed in the sediment or hung in the water where naturally occurring bacteria can eat the chitin.

"This approach is good for deeper ocean areas or anywhere we want to increase the power of marine microbial fuel cells," says Bruce E. Logan, the Kappe Professor of Environmental Engineering.

Microbial fuel cells work through the action of bacteria which can pass electrons to an anode. The electrons flow from the anode through a wire to the cathode, producing an electric current. In the process, the bacteria consume organic matter in the water or sediment. The Penn State approach uses the bacteria that naturally occur in the oceans and because so many sea creatures produce chitinous shells, many marine bacteria break down chitin.

Marine energy sources are often placed in remote areas to power sensors for such measurements as temperature, pressure, salinity, density, turbidity or particulate content. These sensors could be placed on buoys or used to monitor around offshore drilling platforms and to monitor for pollution or contamination, such as that caused by red tide, in both salt and fresh water. Other small devices can measure sound, light transmittance and conductivity. While the amounts of energy needed for these purposes are small, the locations often necessitate long-term remote operation.

The researchers, who included Logan; Rachel A. Brennan, assistant professor of civil engineering; Tom L. Richard, associate professor of agricultural and biological engineering; and Farzaneh Rezaei, graduate student in agricultural and biological engineering, tested two types of chitin and one type of cellulose.

"We found that cellulose was not as good as chitin," Logan reported in the current issue of Environmental Science and Technology. "The ocean is so used to chitin that there may be more naturally occurring bacteria that eat chitin than those that eat cellulose."

While the team has not tested the marine microbial fuel cell in the ocean sediment, they did create a fuel cell in the laboratory consisting of a glass bottle with the anode embedded in the sediment on the bottom and the carbon paper and platinum cathode suspended in the water. In the ocean, no container is needed, but the anode and cathode must be close enough together so the protons or positive charge can pass through the water to the cathode.

The researchers tested two different sizes of chitin, one finer than the other and found that both increased power production over the same set up without the additional bacterial food supply. However, the finer particles produced almost twice the power as the larger particles, suggesting that the bacteria can more easily consume the smaller particles.

"We can adjust the particle size to control the rate at which chitin is consumed and alter the power output and the fuel cell's longevity," says Logan. "Technically, there is no reason why we cannot put a bigger bag of feed for the anode to supply more food."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>