Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pointing a finger at the source of fecal bacteria

25.05.2007
Scientists use 'toolbox' approach to pinpoint contamination sources in Nebraska watershed

Excessive levels of fecal bacteria were to blame for almost 60 percent of Nebraska streams deemed impaired by federal and state environmental laws in 2004. In order to develop effective pollution-control strategies, it is important for researchers to identify the source of the contamination. By using multiple methods, or a “toolbox” approach, to determine the origin of fecal pollution in streams, researchers were able to identify the source of fecal bacteria with greater certainty than if testing with a single method.

In collaboration with the Nebraska Department of Environmental Quality, the U.S. Environmental Protection Agency (EPA), and the University of Cincinnati, U.S. Geological Survey (USGS) scientists used a toolbox approach when investigating the sources of fecal bacteria within the Plum Creek watershed in south-central Nebraska. The scientists report their findings in the May-June 2007 issue of the Journal of Environmental Quality.

This research was funded by the Nebraska Department of Environmental Quality, the U.S. Geological Survey Cooperative Water Program, and the U.S. Environmental Protection Agency.

In 2001, monitoring studies by the Nebraska Department of Environmental Quality named Plum Creek the most contaminated tributary to the middle reaches of the Platte River. The researchers used two fecal source-tracking tools to analyze contaminated water and stream-sediment samples in the Plum Creek watershed.

The source-tracking tools use genetic material from bacteria collected in water and sediment samples to determine their source, either by comparing the genetic material with that of known fecal bacteria sources, or by looking for a “marker” within the genetic material that is associated with a specific fecal source. The results of the study revealed that cattle and wildlife were the dominant sources of fecal bacteria found in water and stream sediment samples at the main study site located in an upper reach of the creek.

“While the two methods led to similar overall interpretations, using both methods together gave us a clearer picture of potential sources and the strengths and weaknesses of the methods used,” said USGS Hydrologist Jason Vogel, lead author of the study. “Additionally, results from bacteria found in stream-bottom sediment also suggest that different tools for tracking fecal contamination may have varying relevance to the more specific goal of tracking the sources of E. coli in water or soil within the watershed.”

Ongoing studies at the USGS and EPA are testing the use of microorganisms as tools for tracking fecal contamination. Fecal bacteria can enter watersheds from specific sources such as wastewater treatment outfalls, and diffuse sources such as runoff from fields where livestock waste has been applied as fertilizer. Determining the source of the bacteria is necessary to implement appropriate pollution-control practices and comply with water-quality standards required by the Clean Water Act. Further research is needed to continue to develop and refine existing and new tools for identifying the sources of fecal contamination in water and sediment.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>