Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Shall We Do With Nuclear Waste?

12.03.2002


There are two ways of dealing with the problem of nuclear waste. The first one is the easiest but not the most sensible: you can simply bury nuclear waste products and try to forget about them. However, this way does not seem to be the most rational. It seems much more attractive to try to derive some benefit from the situation. In this case it is worth extracting the compounds that could be used in future from the whole mass of nuclear wastes. In the first instance, these are non-burnt uranium and plutonium. These components of nuclear fuel can be returned into nuclear reactors. Moreover, it is necessary to extract radionuclides, which can find their further application because these compounds of nuclear wastes, as the scientists say, "contain the whole periodic table". And all the remaining nuclear substances should be divided into fractions according to their lifetime: long-lived, short-lived, and stable. How to solve the task?



According to the existing technology all this nuclear rubbish should be dissolved on the first stage and only then the useful compounds are extracted from the solution in succession. An organic solvent is usually used for this purpose. However, the extractant used in industry does not identify many compounds.

Chemists and technologists under the supervision of Professor Zilberman have thought up how to divide nuclear waste products into separate fractions. The researchers could extract from the whole mass not only pure uranium and plutonium but also extremely dangerous radionuclides separately. The secret is in the addition to the extractant discovered by the scientists. It enables extracting all the necessary compounds effectively and selectively on particular stages of processing. It is also very important that the technology can be applied to the industrial process using standard equipment that should be just modified.


The tests proved that the new technology enabled extracting uranium, plutonium, neptunium, technetium, transplutonium elements, and also stable molybdenum and zirconium from the waste materials of nuclear power stations. Then the extracted radionuclides can be used or buried.

Tatiana Pitchugina | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>