Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: As rainfall changes, tropical plants may acclimate

09.05.2007
Tropical plants may be more adaptable than commonly thought to changing rainfall patterns expected to accompany a warming climate, new research shows.

A University of Florida scientist and other researchers have found that plants in Hawaii have the ability to acclimate to big changes in rainfall in at least one important respect – how they get nutrients. The plants largely rely on one form of the vital nutrient nitrogen in moist areas. But in the still wetter terrain that characterizes some rainforests, they switch to another form of nitrogen that becomes more available in those conditions.

The findings, reported in paper set to appear this week in the online edition of the Proceedings of the National Academy of Sciences, present a notable exception to the commonly held idea that tropical plants are highly specialized in their own little environmental niches – and thus very sensitive to disturbances of those niches.

That could be good for the plants because climate change is expected to radically alter rainfall patterns in the tropics. But it comes with a caveat: Nutrient uptake is only one of many ingredients in plant life. Other unrelated changes that accompany a warming climate could still affect plant distribution and growth, such as those that hold sway over pollinators, insect predators or invasive plants.

"These plants should be able to do OK in terms of their nitrogen nutrition, even with the climate changing," said Ted Schuur, a UF assistant professor of ecology and one of four authors of the paper. "But of course, we only studied one group of organisms and one mechanism in this study" and plants depend on many different mechanisms to coexist, some of which may also change with changing rainfall.

The scientists researched plant growth at six sites on the slopes of Mount Haleakala, a volcano on the island of Maui. The sites were ideal because they share the same species, elevations and soils but have vastly different rainfall. The wettest rainforest sites receive an astonishing 196 inches of rain annually, while the driest sites in this study get about 79 inches.

"That's the range of rainfall you might find across the entire tropics, but that would usually be over hundreds or thousands of kilometers," Schuur said. "I can visit all of these forest sites in a single day."

The scientists analyzed nitrogen isotopes in the soil and leaf samples of four plant species at each site. They learned that drier soils contained more nitrogen in the form of nitrate, while wetter soils contained more nitrogen in the form of ammonia. Isotopic analysis of the plants revealed that they switched from nitrate to ammonia "abruptly, and in unison" once the rainfall reached a certain level.

"There's an abrupt change halfway through the rainfall gradient, and they all switch to this other form for their nutrition," Schuur said.

That's a surprise partly because of the uniformity of response, he said. Such uniformity sharply contrasts the conventional notion that tropical plant species coexist by adopting widely different strategies to getting what they need. At least with regard to nitrogen uptake, all the Hawaiian plants acted the same -- and at the same time.

" … This does not support the idea that natural selection has caused species to diverge into highly specialized niches for nitrogen consumption," the PNAS paper says.

That's a positive sign considering that as the Earth warms, some areas of the tropics are widely expected to be wetter, some drier. So, at least one of dozens of variables that will change with precipitation changes – nutrient uptake – might not affect tropical plants. That said, plenty of others could, Schuur said.

Ted Schuur | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>