Invasive Grass May Impede Forest Regeneration

M. vimineum, commonly called Nepalese browntop or Japangrass, was first identified in 1919 near Knoxville, Tennessee, where it was inadvertently introduced in packing material for porcelain china. Since then, the grass has spread across the southern States, flourishing on floodplains and streamsides and displacing native vegetation.

“Microstegium can invade and persist in the low-light conditions of interior forests, making excellent use of short bursts of sunlight,” says Chris Oswalt. “It can also flourish in the full light conditions that follow many canopy disturbances.”

While working on a larger oak regeneration study at The Ames Plantation in southwest Tennessee, the researchers noticed a dramatic increase in Microstegium after silviculture treatments that opened the forest canopy. To test whether the grass would negatively impact the regeneration of native woody species, they conducted a separate set of studies nested within the silvicultural study with treatments that ranged from no disturbance to complete canopy removal.

After a season of monthly vegetation measures on a total of 720 plots, the researchers found that although Microstegium biomass did not differ significantly among silviculture treatments, there was a significant difference between treated and undisturbed plots, with Microstegium biomass 2 to 10 times greater in disturbed plots. They also found that the species richness of native woody species on the disturbed plots declined as the percent of Microstegium cover increased.

“We found that when exposed to sunlight, Microstegium can grow rapidly, often forming thick organic mats on the forest floor that directly impede the regeneration of native woody species by blocking sunlight, and indirectly by blocking seeds from reaching the soil in order to germinate,” says Chris Oswalt. “This grass, which can be easily overlooked in the understory, should be given more attention by both researchers and land managers.”

Funding and support for the study was provided by the University of Tennessee Department of Forestry, Wildlife and Fisheries, where Chris Oswalt is a Ph.D. candidate, the Southern Research Station and The Hobart Ames Foundation.

The full text of the article is available at: http://www.srs.fs.usda.gov/pubs/26860

Media Contact

Chris Oswalt EurekAlert!

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors