Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much water, fertilizer bad for plant diversity

28.03.2007
Study shows that polluted ecosystems support a limited number of species

Too much of multiple good things – water or nutrients, for example – may decrease the diversity of plant life in an ecosystem while increasing the productivity of a few species, a UC Irvine scientist has discovered.

This finding provides a new explanation for why grasslands, lakes and rivers polluted with nitrogen and phosphorus, usually from agriculture, contain a limited number of plant species. For example, where the Mississippi River empties into the Gulf of Mexico, the water contains low levels of oxygen and high levels of nitrogen and phosphorus used in fertilizers resulting in reduced plant diversity.

“Our results show nutrient pollution can cause loss of plant species from a habitat that can persist for more than 100 years,” said W. Stanley Harpole, postdoctoral researcher in ecology and evolutionary biology at UCI and first author of the study. “This means human actions that simplify habitats can lead to long-term loss of biodiversity.”

This study appeared March 25 in the online edition of the journal Nature.

The findings are based on experiments conducted at the University of California’s Sedgwick Reserve in the Santa Ynez Valley. Researchers applied combinations of water and nutrients – including nitrogen, phosphorus and cations – to plots of grassland and found that areas treated with all of the resources had the fewest number of species but the highest productivity of a select few plant types.

When the many resources that plants compete for become overly abundant, the environment simplifies, and an emphasis is placed on a single environmental factor such as space or sunlight. Only a few species best adapted to the new environmental conditions will thrive, Harpole said.

The experiment, combined with an analysis of a similar 150-year-old study, supports the scientists’ theory that plant diversity is directly related to the number of limiting factors such as levels of nitrogen, phosphorus, potassium and water.

G. David Tilman, professor of ecology at the University of Minnesota, collaborated with Harpole on this research. The study was supported by the Andrew W. Mellon Foundation.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,800 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>