Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual duck bills demonstrate species coexistence

01.03.2007
Ecologists continue to debate how different species manage to coexist. If two species use identical resources, such as food, invariably one will be more efficient and out-compete the other.

The classical explanation is that each species has evolved morphological or physiological traits that allow it to exploit some resources more efficiently than all other species. Such partitioning of resources essentially provides each species with exclusive access to resources necessary for its survival.

Although coexistence is often attributed to interspecific differences in morphology, direct evidence is relatively rare. Dabbling ducks, which include the ubiquitous mallard, are a good example. Dabbling ducks are primarily filter-feeders.

They use lamellae, which are comb-like projections on the bill, to sieve food particles from pond water. Many ecologists, including Darwin, suggested that ducks coexist because interspecific differences in the spacing of bill lamellae allow each species to consume food particles of different sizes. Research published in the March issue of the American Naturalist by Brent Gurd of Simon Fraser University has demonstrated that interspecific differences in lamellar length, not spacing, allow ducks to partition food by size.

"Lamellar spacing alone does not lead to resource partitioning," said Gurd, "ducks with small spacing are more efficient than species with wide spacing because they retain a wider range of particle sizes than species with wide spacing. In order for variation in bill morphology to lead to resource partitioning, each trait must impose both costs and benefits on foraging ducks. It is the trade-off between these costs and benefits that allows resources to be partitioned."

"Foraging ducks are faced with the cost of separating food particles from detritus particles like sand and silt" said Gurd. "To do this, they alter the position of the upper and lower bill while they are feeding. This alters the size of the gap between the lamellae on the upper and lower bill, which allows them to determine the size of the particles they filter and ingest. By avoiding particle sizes that contain too much detritus, ducks increase their foraging efficiency."

However Gurd found that avoiding detritus reduces the rate at which ducks can filter water. "It is this trade-off between avoiding detritus and foraging rate that allows ducks to partition resources" said Gurd. "Ducks with long lamellae are more efficient at selecting smaller food particles while ducks with short lamellae, like mallards, are more efficient at selecting larger particles."

To test his idea, Gurd created virtual bills using computer software typically used by engineers to design complex machinery. "The software allowed me to create exact, three-dimensional replicas of duck bills complete with articulating joints" said Gurd. "The replicas allowed me to determine the particle sizes each duck could ingest and the rate at which they could ingest them."

D. Brent Gurd, "Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology" American Naturalist 169:334-343 (2007)

Patricia Morse | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>