Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate, cod collapse, have combined to cause rapid North Atlantic ecosystem changes

26.02.2007
Ecosystems along the continental shelf waters of the Northwest Atlantic Ocean, from the Labrador Sea south of Greenland all the way to North Carolina, are experiencing large, rapid changes, reports a Cornell oceanographer in the Feb. 23 issue of Science.

While some scientists have pointed to the decline of cod from overfishing as the main reason for the shifting ecosystems, the article emphasizes that climate changes are also playing a big role.

"It is becoming increasingly clear that Northwest Atlantic shelf ecosystems are being tested by climate forcing from the bottom up and overfishing from the top down," said Charles Greene, director of the Ocean Resources and Ecosystems Program in Cornell's Department of Earth and Atmospheric Sciences. "Predicting the fate of these ecosystems will be one of oceanography's grand challenges for the 21st century."

Most scientists believe the planet is being warmed by greenhouse gases emitted in the burning of fossil fuels, and by changing land surfaces. Early signs of this warming have appeared in the Arctic: Since the late 1980s, scientists have noticed that pulses of fresh water from increased precipitation and melting of ice on land and sea in the Arctic have flowed into the North Atlantic Ocean and made the water less salty.

At the same time, climate-driven shifts in Arctic wind patterns have redirected ocean currents. The combination of these processes has led to a freshening of seawater along most of the Northwest Atlantic shelf.

In the past, during summer months, a wind-mixed layer of warmer, less salty water (which is less dense and lighter) floated on the ocean surface. When the air temperature cooled during autumn, temperature and density differences lessened between the surface mixed layer and the cooler, saltier waters below. Similar to the flow of heating and cooling wax in a lava lamp, as the density differences became smaller, mixing between the layers typically increased and the surface mixed layer deepened.

But, Greene cites recent scientific studies that reveal the influx of fresh water from Arctic climate change is keeping the surface mixed layer relatively shallow, curbing its rapid deepening during autumn. A gradual rather than rapid deepening of the surface mixed layer has led to changes in the seasonal cycles of phytoplankton (tiny free-floating plants like algae), zooplankton (tiny free-floating animals like copepods) and fish populations that live near the surface, according to the report.

Without the fall deepening of the surface mixed layer, phytoplankton populations have continued access to daylight needed for growth, and their numbers have stayed abundant throughout the fall. In turn, zooplankton, which feed on the phytoplankton, have increased in number during the fall through the early winter. Herring populations also rose during the 1990s, which some scientists suspect may be because of the abundance of zooplankton to feed on.

At the same time, Greene's article cites how the collapse of the cod populations in the early 1990s has led to increases in bottom-living species such as snow crab and shrimp that cod feed on. Without cod preying on them, other animals that live in the water column and feed on zooplankton, including herring, may have increased in numbers. But, while the story with herring is still unclear, the authors contend that the crash of cod populations does not fully explain why phytoplankton and zooplankton populations at the base of the food chain have risen during autumn.

"We suggest that, with or without the collapse of cod, a bottom-up, climate driven regime shift would have taken place in the Northwest Atlantic during the 1990s," Greene said.

Andrew Pershing, an oceanographer who recently moved from Cornell to the University of Maine and Gulf of Maine Research Institute, co-authored the article.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>