Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better freshwater forecasts to aid drought-plagued west

19.02.2007
Even at the best of times, the West's water supplies are fraught with political, economic and environmental wrangling. When devastating droughts occurred in the 1970s and the 2000s, farmers and fish alike suffered. Yet the ability to predict stream flows in the Western United States at seasonal lead times – months or longer – is scarcely better today than it was in the 1960s.

Forecasting models that incorporate high-powered computers and satellite data may soon modernize the way Western states manage freshwater supplies. Several such models are currently under development. Dennis Lettenmaier, professor of civil and environmental engineering at the UW, will describe the role of science in Western water management Friday in San Francisco at the American Association for the Advancement of Science annual meeting.

A half-century ago, resource managers would ski or hike to mountain stations and measure the amount of water stored in the snowpack. They took a metal tube and inserted it in the snow, then weighed the tube to calculate how much water it contained. Today's electronic systems automate this process, but use a similar principle, Lettenmaier said.

"If you know how much snow is on the ground in the spring, you have a pretty good idea of how much runoff will occur during the spring and summer," Lettenmaier said. "That's something that's been used for a long time. The question is: can we do better than that?"

A new generation of hydrologic forecasting models integrate not only scattered, ground-based measurements of snow depth, but also satellite measurements of snow extent. The University of Washington's West-Wide Seasonal Hydrologic Forecast System is an example of such a model. It recalculates conditions every day using weather data and satellite images. UW's model incorporates atmospheric climate forecasts and produces forecasts of stream flow for up to a year into the future.

The overall aim is to provide computerized water forecasts equivalent to modern weather-prediction models. The new forecast methods incorporate a wealth of other climate information to produce results earlier in the season, more accurately and for situations that are outside the norm. These methods recalculate conditions every day by incorporating satellite images of snowcover and computing the influence of that day's temperature and precipitation.

Forecasts based on physical processes avoid the problems inherent in statistical forecasting methods that rely on historical patterns. For example, after unusually heavy snowfall in the Southwest in 2003, traditional forecast models predicted that the spring and summer runoff in Utah's Virgin River would be as much as 10 times its normal rate, values that didn't seem believable. In the case of drought, snow levels in 1977 were so low that forecasted runoff for some California streams was negative.

"It's a classic problem of extrapolating a line out past the end of the observations," Lettenmaier said. When current conditions don't look like anything previously seen, methods that are too closely related to historic patterns can fail.

Water managers are beginning to feel a crunch related to climate change, Lettenmaier said. Springtime melt now starts some 20 days earlier than a half-century ago, which is "pretty unequivocally" seen as a signature of climate change, he said. The shift results in a bigger gap between when the fresh water flows down from the mountains and when it actually is most needed in the height of summer. Climate change constitutes an additional challenge, on top of factors such as population movement, agriculture changes and water use changes, that managers must contend with.

Knowing the amount of water ahead of time lets people prepare for droughts or flooding. Building more reservoirs would help, in particular to handle earlier runoff, but the West is unlikely to see any more dams built, Lettenmaier said. Instead, people can use forecasts to decide which crops to plant, whether to drain reservoirs to prepare for flooding and how to allocate water resources early in the season.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>