Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Annual plants may cope with global warming better than long-living species

10.01.2007
Countering Charles Darwin's view that evolution occurs gradually, UC Irvine scientists have discovered that plants with short life cycles can evolutionally adapt in just a few years to climate change.

This finding suggests that quick-growing plants such as weeds may cope better with global warming than slower-growing plants such as Redwood trees -- a phenomenon that could lead to future changes in the Earth's plant life.

"Some species evolve fast enough to keep up with environmental change," said Arthur Weis, professor of ecology and evolutionary biology. "Global warming may increase the pace of this change so that certain species may have difficulty keeping up. Plants with longer life cycles will have fewer generations over which to evolve."

The study appears the week of Jan. 8 in the Proceedings of the National Academy of Sciences.

Weis and researchers Steven Franks and Sheina Sim studied field mustard, a weedy plant found throughout the Northern Hemisphere. In a greenhouse, they grew mustard plants at the same time from seeds collected near the UCI campus in the spring of 1997 -- two years before a five-year drought -- and seeds collected after the drought in the winter of 2004. Seeds can remain dormant but alive for years and be revived with a little water and light. The plants were divided into three groups, each receiving different amounts of water mimicking precipitation patterns ranging from drought to very wet conditions. In all cases, the post-drought generation flowered earlier, regardless of the watering scheme.

This shift in genetic timing was further confirmed with an experiment that crossed the ancestors and descendents. As predicted, the intergenerational hybrids had an intermediate flowering time.

"Early winter rainfall did not change much during the drought, but the late winters and springs were unusually dry. This precipitation pattern put a selective pressure on plants to flower earlier, especially annual plants like field mustard," Franks said. "During drought, early bloomers complete seed production before the soil dries out, whereas late bloomers wither before they can seed."

The technique of growing ancestors and descendents at the same time allowed the scientists to determine that the change in flower timing was in fact an evolutionary shift -- not a simple reaction to changing weather conditions. This method, pioneered by Albert Bennett, professor of ecology and evolutionary biology and acting dean of the School of Biological Sciences at UCI, has been used with bacteria, but this is the first study to make full use of it with a plant species. Bennett and his colleagues froze ancestral strains of E. coli so they could evaluate the bacterium's adaptive evolution after culturing it at elevated temperatures for thousands of generations.

Today, Weis is the organizing chairman of Project Baseline, a national effort to collect and preserve seeds from contemporary plant populations. Decades from now, plant biologists will be able to "resurrect" these ancestral generations and compare them to their descendents. By that time, advanced DNA technology may make it possible to sequence the entire genome of individual plants and at low cost. If so, biologists will be able to measure how much plants have evolved with climate change and pinpoint the evolution's underlying genetic basis.

Scientists expect global warming to alter air circulation patterns over the Pacific Ocean, and climate models predict frequent and extreme fluctuations in precipitation along the coast, which likely will affect plant life.

"If we go out today and collect a large number of seeds and freeze them, they will be a resource available to the next generation of scientists," Weis said. "Because of global warming, the evolution explosion is already under way. If we act now, we'll have the tools necessary to determine in the future how species respond to climate change."

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>