Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean sampling yields environmental sources of coral symbionts

05.12.2006
By sampling different ocean locations for the presence of an elusive but critical group of algae, researchers have gained new insight into the dwelling places of the symbiotic organisms that reef corals need for survival.

The symbiosis between special algal species and reef corals is the foundation of a highly productive and biologically complex ecosystem, but our understanding of how this symbiosis is established by new corals has been limited by the fact that the symbiotic algae are difficult to find and study in the ocean.

But now a group of researchers has successfully identified algae of the genus known to represent coral symbionts, and has gone on to show that the isolated algae are indeed capable of establishing symbioses with new corals. The findings, which potentially bolster future efforts to protect and rehabilitate coral reefs, are reported by a group including Mary Alice Coffroth of the University at Buffalo and appear in the December 5th issue of Current Biology.

In response to environmental stresses, coral reefs around the world are in a decline due in large part to coral bleaching—loss of the symbiotic photosynthetic algae that live within corals and provide much of their energy. These symbiotic algae are essential to their host’s survival, but many corals must acquire their symbionts anew with the emergence of each generation. However, it has remained unclear how newly settled coral polyps acquire their symbionts in the ocean.

Organisms that resemble coral symbionts—dinoflagellates that are similar to those of the Symbiodinium genus that grow within corals—have been isolated from both sand and the water column; however, neither the locations of these populations nor their ability to establish symbioses is known. For both our understanding of reef ecosystems and their conservation, it is critical to recognize where these symbionts reside in the ocean environment.

In the new work, the researchers succeeded in identifying Symbiodinium in the water column as well as on ocean-bottom substrates. Most importantly, the researchers also demonstrated that a subset of Symbiodinium found in the water and on benthic substrates (that is, on algae and sediments) can infect new coral polyps. These isolates are therefore capable of establishing symbioses with corals and thus point to environmental sources of symbionts that may prove important in the recovery of reef-building corals after bleaching events.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>