Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening to gunshots may save lives and wildlands

17.11.2006
From the crack of a supersonic bullet, Montana State University electrical engineering professor Rob Maher is exploring how sound can be used for everything from saving soldiers from snipers to saving wilderness from noise pollution.

This fall, Maher presented the results of two years of research into gunshots at the Institute of Electrical and Electronic Engineers (IEEE) Signal Processing Society's annual meeting in Jackson Hole, Wyo.

Because of its intense energy and distinctness, a gunshot is "the perfect signal" with which to explore the uses of sound, Maher said.

"It produces what engineers call the 'impulse response' of the sonic environment," Maher said. "If we can't make sense of how a gunshot behaves, then it's unlikely we can do much with more complicated, or lesser quality, sounds."

Maher initially explored two questions with gunshots: First, could the sound of a gunshot on a 911 recording be linked to a specific weapon? The question has intrigued prosecuting attorneys for decades. Second, could the sound of a gunshot be used to determine the location of a hidden sniper?

Through a search of previous studies and his own research, Maher found the "acoustical fingerprinting" of a gunshot from a 911 tape was impossible.

"If you had a very high quality recording made with a very high quality microphone, you might be able to determine if it was a handgun or rifle and the type of ammunition - at best - but you couldn't rule in, or out, a specific firearm," Maher said.

Finding a sniper holds more promise. While a sniper may be able to hide and use a silencer to cover the sound of gunpowder exploding in a shell, the laws of physics will reveal the path of a bullet.

"Most military rifles fire bullets at supersonic speeds," Maher said. "At that speed, the air in front of the bullet doesn't move out of the way in a nice, regular fashion. It moves in a shock."

That shock creates one "boom." There is a second, smaller "boom" as the air returns to normal.

This phenomenon is clearly heard when something big, like a space shuttle, breaks the sound barrier. The shuttle creates two booms as it comes in for landing.

"There is no way to hide the shock wave created by a supersonic bullet," Maher said.

Those booms can be recorded using microphones placed in different locations and then with geometry, the trajectory of the bullet can be determined through triangulation.

Maher successfully determined the trajectory of a bullet using this method at the Logan Shooting Range, near Trident, Mont.

"There are a few commercial systems using this method in Iraq," Maher said. "But they're classified and it's not clear what's being done."

The only way a sniper could hide from such shockwave detection is to fire a bullet that travels at less than the speed of sound, an unlikely prospect since the world's most common weapon, the AK-47 rifle, fires bullets at a little more than twice the speed of sound.

While Maher was able to determine the trajectory of a bullet on a flat shooting range, the real-world application in a city, where sound would bounce off buildings or be absorbed by trees is far more difficult and it plays into another research area: using technology to pick a desired sound from background noise.

"For humans, picking out a desired sound from reflections or background is very easy: A parent can pick out their child's cry in a noisy nursery," Maher said. "But creating technology that could mimic this is very difficult."

Technology that could sort desired sounds from background noise could be used to monitor wildlife habitats. Microphones could record a month's worth of sound in an area and then computer software would sort that massive amount of data into useable chunks: elk bugles, aircraft noise, wolf howls, gunshots, etc.

"Take frogs for example," Maher said. "Frogs are very sensitive to environmental changes. You might be able to augment temperature, moisture and other environmental data with 24/7 recordings of frog vocalizations to estimate population trends.

"You might learn all sorts of interesting things: such as there is less frog noise year-to-year, or maybe the frogs croak at different times year-to-year based on other environmental factors."

But to hear the frogs, Maher will have to spend some more time listening to gunshots.

"The next step is to do more careful calibrations on all the parameters: the gunpowder, the local geometry, the acoustical characteristics of the vicinity and then work from there," he said.

It has been an interesting project for Maher, not only because it involves acoustics - one of his specialties - but also because he came into the project knowing almost nothing about guns.

"I'm not a hunter," he said. "But fortunately in Montana I've had no trouble finding lots of knowledgeable help."

Contact: Rob Maher, (406) 994-7759 or rmaher@ece.montana.edu.

Rob Maher | EurekAlert!
Further information:
http://www.montana.edu

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>