Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystem of vanishing lake yields valuable bacterium

19.10.2006
In the salt flats near a slowly vanishing lake, a team of researchers have found never-before-seen bacterium that could clean up some of humanity's pollution.

In three scientific papers currently being written, Brent Peyton, a Montana State University chemical engineering professor, his students, and collaborators are describing the unique qualities of Halomonas campisalis, a bacterium Peyton discovered in 1995 near Soap Lake, Wash.

At the time of discovery, Peyton worked for the Pacific Northwest National Laboratory (PNNL) in Richland, Wash., one of nine U.S. Department of Energy labs. The laboratory wanted to develop a treatment to remove nitrate contaminants from alkaline and saline radioactive wastewater. Such a treatment could also be used to clean-up wastewater from fertilizer and explosive manufacturing plants, which is 10 to 15-times saltier than the ocean and laden with polluting nitrates.

Peyton hoped the salty ecosystem of Soap Lake might be home to a bacterium that could live in such high-salt waters and also find nitrates appetizing.

Soap Lake is one of only 11 known meromictic lakes in the United States. The water in meromictic lakes separates into layers of differing mineral concentrations. The upper layer of Soap Lake is a little less than half the saltiness of the ocean, but more than 100-times saltier than river water. The bottom layer is more than twice as salty as the ocean and more than 700-times saltier than river water. These two layers are thought to have remained unmixed in any significant way for the past 2,000 to 10,000 years. The conditions of Soap Lake are considered so extraordinary the National Science Foundation designated it a "microbial observatory."

Near Soap Lake are salt flats. Water seeping through these flats finds its way into the lake, carrying salt with it. It was in these flats Peyton collected some mud in 1995.

In the lab, he tried to make something grow and something did: the bacterium he would later name Halomonas campisalis. The last part of the name translates from Latin into "salt flats."

Making its home in super-salty water, Halomonas campisalis eats nitrates for breakfast, dinner and lunch. When it's digested its meal, it gives off nitrogen as waste. In the grand scheme of things, nitrogen is pretty harmless. About 80 percent of the air we breathe is nitrogen.

The bacterium was perfect for the treatment of salty, nitrate-bearing wastewater, as well as wastewater from the production of explosives and fertilizers.

"You could pour that salty wastewater in a tank with Halomonas campisalis, add sugar or vinegar for food and let it perk away to create nitrogen," Peyton said.

It might sound simple, but it's taken years of painstaking laboratory work to grow, identify, and characterize all the unique capabilities of Halomonas campisalis. It could take years more for the bacterium to be turned into an industrial process, something Peyton hopes a company will attempt in the future.

His work has been done in close collaboration with microbiologists Melanie Mormile from the University of Missouri - Rolla in Rolla, Mo., and Holly Pinkart, from Central Washington University in Ellensburg, Wash.

Since first walking in Soap Lake's mud, Peyton's career and his Soap Lake research have taken him from five years at PNNL to eight years at Washington State University in Pullman, Wash., and then to MSU in August 2005. It was a homecoming of sorts: Peyton received his Ph.D. in chemical engineering from MSU in 1992.

During that time, Soap Lake has continued on a course that may lead to its disappearance.

"Many unique and undiscovered organisms have evolved in the extraordinary saltiness of the Soap Lake ecosystem," Peyton said. "But the lake's saltiness is being diluted, likely because of a major irrigation project built in the 1950s. It is already 60 percent less salty than 50 years ago. In another 50 years, Soap Lake as we know it - and the unique life it harbors - may not exist."

Contact: Brent Peyton, (406) 994-7419 or bpeyton@coe.montana.edu

Brent Peyton | EurekAlert!
Further information:
http://www.coe.montana.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>