Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent sensors gear up for real-time flood monitoring

19.10.2006
An intelligent flood monitoring system that could give advance warning of the type of rapid flood that engulfed the UK Cornish village of Boscastle in 2004, is under test in the Yorkshire Dales. Danny Hughes, Phil Greenwood and colleagues from Lancaster University won an award for their paper describing the system at the UK e-Science All Hands Meeting in Nottingham last month.

The system, which makes use of grid computing, could reduce the cost of flood damage by providing warnings of local flooding in time for people to take pre-emptive action. Most current systems issue general warnings over large areas because they rely on sparsely-distributed sensors which send information to a central point for analysis. The new system, which is based on a network of intelligent sensors that can be placed in flood-prone sites, promises rapid, low-cost warnings specific to these sites.

Professor Paul Watson, from Newcastle University who chaired the AHM programme committee said: "we were impressed with the way in which the UK e-Science Programme has encouraged the formation of a multi-disciplinary team to address an interesting problem of great practical importance to the population as a whole; flooding is a major concern in the UK and many other countries. By making advances in a set of scientific fields and then combining the results, the team has built a novel and interesting new system".

The system now undergoing trial in Yorkshire consists of 13 depth sensors fixed in locations across a flood plain and a digital camera which rather like a traffic speed camera, monitors flow rate from the speed of flotsam between two points. Each sensor incorporates a powerful computer, no bigger than a packet of gum, which communicates wirelessly with other sensors in the network to form a computing grid. The software that enables the sensors to operate as a grid has been developed under the UK e-Science Core Programme (Open Overlays project). The North-West Development Agency is funding the flood monitoring work.

When flood waters are rising, the sensors can change how they operate together so that the network can continue to monitor the situation even if some sensors are submerged or swept away. The sensors are also able to adjust their power consumption so batteries are conserved during dry times and power is available for increased activity during flood. "As soon as the sensors detect water coming down the valley, the network gears up," says Danny Hughes.

In order to provide flood warnings, the system makes use of flood forecasting models which were developed at Lancaster by Professor Peter Young and colleagues. The models can be run on the sensor computing grid and adjusted so that their predictions stay in line with what the sensors are recording. "An interesting possibility is to use such a local warning system to give advanced warning, even in catchments where the response to rainfall is very fast, making flood forecasting very difficult," suggests Professor Keith Beven of Lancaster who is also involved in the project. "An example was the Boscastle flood in 2004, where a general forecast of heavy rain was issued, but the event was too localised to be able to give a warning to Boscastle residents. Fortunately, nobody was killed in that event," he says.

Judy Redfearn | alfa
Further information:
http://www.esrc.ac.uk
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>