Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmosphere and Oceans Finely Balanced

24.01.2002


The atmosphere and oceans exist in a delicate state of balance according to research co-ordinated by the University of East Anglia (UEA) and published this month by the Natural Environment Research Council (NERC).



The recently completed five year research programme of Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) concludes that atmospheric pollution travels much further than previously thought and that this has important consequences for global chemistry and climate.

"The programme found that atmospheric chemicals interact with the ocean web of life in a profound way, such as gases being emitted that help regulate atmospheric conditions and the supply of essential elements such as selenium transported from the oceans to the land," said Dr Bill Sturges of UEA’s School of Environmental Sciences, the research programme’s Project Manager.


Chemical processes associated with cloud formation and distribution were found to be much more affected by pollution than previously thought and these findings will be important in ensuring that global climate models are as up to date and accurate as possible.

One of the projects carried out as part of the ACSOE programme investigated how trace metals are carried off the European continent by south-easterly winds and are deposited in the north-east Atlantic Ocean.

"Even though the predominant airflow over the north-east Atlantic is relatively clean and westerly, when south-easterly wind does occur it brings with it significant amounts of manmade trace metal pollution - manganese, lead and zinc - which has been picked up over Europe’s heavily populated and industrial regions," said Dr Lucinda Spokes of UEA’s School of Environmental Sciences.

"These pollutants, which travel hundreds of miles, have an important impact on the marine plant life when they are deposited in the ocean. Some act as nutrients for marine plants known as phytoplankton, while others are highly toxic to them."

The ACSOE programme carried out research in three main areas:
  • air-sea exchange, for example gases produced by marine microorganisms;
  • the chemistry responsible for ‘cleansing’ the lower atmosphere of pollutants; and
  • development of clouds and fine airborne particles, or aerosols, in European air during transport over the Atlantic Ocean.


Further research is needed to improve scientific understanding of the intricate relationships between air quality, ocean productivity, climate and indeed human health.

The complete programme findings and conclusions are published this month in ACSOE: Achievements and Scientific Highlights.

Mary Pallister | alphagalileo
Further information:
http://www.badc.rl.ac.uk/data/acsoe

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>