Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean forests prompt pollution rethink

24.01.2002


Nitrogen in unpolluted streams is more organic.
© Nature


Agriculture has added to the natural nitrogen cycle.
© Photodisc


South American streams call current nitrogen-cycle theory into question.

Pollution may have altered northern hemisphere forests dramatically. The surprise finding that clean forests use nitrogen differently to polluted ones emphasizes the effect that humans have on the planet’s nitrogen cycle1. It may even prompt a rethink of the way that this cycle works.

Humans have added vast amounts of nitrogen to the earth’s ecosystems. The element fertilizes plants. To understand what affect this has had already, and how the planet might fare in the future, we need to know how forests used nitrogen before this artificial influx began.



So Steven Perakis and Lars Hedin, ecologists at Cornell University, Ithaca, New York, searched the globe for an environment with as little nitrogen pollution as possible. They settled on 100 streams in temperate forests in Chile and Argentina, far from industry.

They found that more than three-quarters of the nitrogen in these streams is organic (combined with carbon). Nitrogen from pollution is overwhelmingly inorganic - chemically bound to oxygen, hydrogen or metals.

Over 70% of the nitrogen in woodland rivers in Europe and North America is in the form of inorganic nitrate. But in the 100 South American streams, nitrate was the least abundant form of the element, at only 5%.

So it looks as if northern nitrate is a legacy of human activity. "People have had an even greater effect than we thought," says Perakis.

"It’s an amazingly powerful message," says ecosystems researcher Knute Nadelhoffer of the Marine Biological Laboratory at Woods Hole, Massachusetts. "It changes the way we think about the nitrogen baseline in pristine environments."

It’s a good reminder of how much pollution has altered northern ecosystems, comments Bridget Emmett, who studies nitrogen pollution at the Centre for Ecology and Hydrology in Bangor, Wales. "Whether the baseline in Chile is the same as the baseline would have been in northern systems is debatable," she cautions.

Cycle path

Nitrogen makes up about 80% of the air, but only a few bacteria can turn the gas into a form that plants can use.

Over the past century, nitrate fertilizers and nitric oxides emitted from the burning of fossil fuels have roughly doubled the amount of nitrogen available to the biosphere. And farmers are still adding nitrogen to the land, particularly in developing countries.

Plants and microbes have taken up most of the slack. But large quantities of nitrogen are still washed into rivers and the sea, either because the element is not used or because it is released through death or leaf fall.

In many freshwater, estuarine and coastal environments, such as the Gulf of Mexico, this fertilization has changed the range of plants and animals that live there. Nitrogen-loving species swamp others more suited to poorer conditions (the same thing happens in a fertilized lawn). The extra nitrogen can also feed suffocating blooms of algae.

We need to think about nitrogen emissions in the same way that we consider the influence of sulphur on acid rain, or carbon on the climate, says Nadelhoffer.

"We have perturbed the nitrogen cycle much more than the carbon cycle," he says. "Most forests are still retaining more nitrogen than they release. The question is how much they can retain and for how long."

The theory that seeks to answer these questions currently hinges on nitrate. The new finding might force a rethink. "It seems that our models might be biased," Perakis concludes.

References

  1. Perakis, S. S. & Hedin, L. O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415, 416 - 419, (2002).


JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-10.html

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>