Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Tracks 2006 Hurricane Rainfall

25.09.2006
How can one know how much rain really falls over the path of a tropical storm or hurricane?

This is a question that greatly interests meteorologists and hydrologists. On their behalf, and on behalf of the public which ultimately benefits from better observations of storms, NASA scientists are using satellite data from its rain gauge in space, the Tropical Rainfall Measuring Mission or “TRMM” to help provide these measurements.

TRMM, a joint mission between NASA and JAXA, the Japanese Space Agency, was launched in 1997 to study rainfall in the tropics. Since then, researchers and forecasters have found TRMM invaluable. TRMM has provided rainfall data in places that have no rain gauges, as well as lightning data and a never before seen 3-D look into storms. That 3-D capability has also led scientists to formulate a theory on "Hot Towers," or towering clouds that form in the eyewall of a hurricane.

Currently, scientists are using TRMM data to provide a complete picture of precipitation around the entire world. Goddard scientists Bob Adler and George Huffman are compiling this information using TRMM, as well as data from NASA’s Aqua satellite, a few Department of Defense satellites, a few National Oceanic and Atmospheric Administration polar-orbit satellites, and five international geostationary-orbit satellites. Polar orbiting satellites fly over the north and south poles. Geostationary satellites are those that orbit the Earth in a fixed position over the Equator.

This combination of satellite data allows Adler and Huffman to compute how much rain has fallen over three hour periods for most of the world, not including the upper northern and lower southern hemispheres. Huffman said "Data from TRMM are key to getting the complete picture of rainfall around the world, because of the satellite's high quality sensors and special orbit." Adler and Huffman take advantage of these attributes to adjust each of the other satellite data sets to TRMM's rainfall data.

Scott Braun, a hurricane researcher at NASA's Goddard Space Flight Center, Greenbelt, Md., uses these TRMM Multi-satellite Precipitation Analysis data to create maps of rainfall accumulation along the tracks of hurricanes.

These images show the mapped rainfall for 2006's Hurricane Ernesto in the Atlantic Ocean, Super Typhoon Ioke in the Central Pacific Ocean, and Hurricane John in the eastern Pacific Ocean.

Hurricane Ernesto's Rainfall Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) from the storm's center along the track. The track line is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For the most part, Ernesto was a tropical storm (red line) and became a category one hurricane on the Saffir-Simpson scale on Aug. 28, south of Hispanola. The month and day are indicated along the track. For example, "8/28" is Aug. 28, 2006.

A significant disruption of the storm's rainfall occurred as the storm moved over Cuba, likely contributing to Ernesto's inability to intensify. Despite its modest intensity, Ernesto dumped large quantities of rain on the East Coast. For example, eastern North Carolina recorded 8 to 12 inches of rain, while southeastern Virginia measured up to a foot. Seven inches fell in Worcester County on Maryland's Eastern Shore. Notice how the accumulations estimated from the TRMM data approximately match these reports.

Super Typhoon Ioke's Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line (see legend). The month and day are indicated along the track. Intense precipitation occurred as Ioke spent approximately 8 days at Category 4 and 5 intensity. The rainfall on the day Aug. 29 is estimated by TRMM to be between 120-140 millimeters (4.7 inches- 5.5 inches) as depicted in orange/red in the image. Ioke was a very long-lasting intense storm. The image shows that the rain accumulation exceeded 80 millimeters once the storm reached Category 4 intensity and stayed above that value for about 7 days. On Sept. 1, the rainfall began to diminish and a day later the storm’s intensity began to decrease.

Hurricane John Slammed Baja California

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For example, for most of the day on Aug. 30, the track line is cyan or light blue, indicating at that time, that John was a Category 3 storm on the Saffir-Simpson scale with winds between 111-130 mph. The month and day are indicated along the track. On Tuesday, September 5, much of the southwestern United States was under clouds and rain as the remnants of John moved closer to the region. The normally dry region of southern New Mexico got enough rain to cause isolated road flooding, John's remnants brought southern Arizona scattered rain.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2006/trmm_2006rain.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>