Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat paint to blame for Norfolk Broads' desolation

20.09.2006
One of the main culprits behind an environmental catastrophe that desolated one of Britain's most important wildlife habitats has finally been identified in a study led by researchers from UCL (University College London) and Acroloxus Wetlands Consultancy Ltd, Canada.

In the current issue of the journal Environmental Science & Technology, they reveal that introduction of the compound tributyltin (TBT) as a biocide in boat paint in the 1960s resulted in a dramatic and sudden loss of aquatic vegetation from most of the 50 or so Norfolk Broads lakes.

At the time, scientists pointed the finger at contamination from sewage works and fertiliser run-off from farmland, despite suggestions from the local community that the burgeoning leisure boating industry might be to blame.

Though the use of TBT was banned in freshwater systems in the UK in 1987, the researchers say 40 years on from TBT's introduction the fragile ecosystem remains shattered despite expensive attempts to restore it.

Dr Carl Sayer, of the UCL Environmental Change Research Centre, who co-led the study, says: "For too long TBT has been neglected as a driver of environmental destruction in freshwater wetlands and even though it is no longer in use in UK inland waterways, TBT contamination and its negative effects are still being reported all over the world.

"Real concerns have been raised about TBT derived from industrial and ship breaking activities in several major river systems including the Ganges, Brahmaputra and Yangtze – all of which are connected to shallow lakes. In the case of the Yangtze, the linked shallow lakes are some of the largest in the world and, like the Broads, have experienced problems with plant loss on a large scale."

TBT was originally designed for use on the hulls of large ocean-going ships to reduce the build-up of barnacles. Since the 1970s it has been linked to a host of negative effects in the marine environment including mutations in shellfish. An aggressive marketing programme in the 1960s saw its use fashionably worldwide on much smaller craft both in the oceans and within inland waterways.

"TBT is extremely toxic and highly persistent in the environment, earning it the controversial title as the most toxic substance ever introduced deliberately by man into the aquatic environment," explains Dr Sayer.

"In freshwaters, once TBT is released from an antifouling coating it is rapidly absorbed by bacteria and algae, and eventually works its way up the food chain. Within a short period of time after the paint's introduction to the Broads, it knocked out many of the small invertebrates which are a part of the life support system for water plants – turning the waters of the Broads green with algae."

To investigate levels of TBT in the Broads the researchers took sediment cores from two lakes, one close to the centre of the boating industry and the other half a kilometre away. Results show an abrupt decline in plant and invertebrate populations at the precise time that a strong TBT signature was detected.

"The irony of the tale is that the paint was designed to stop barnacles attaching to boats – which you don't get in freshwater. By simply lifting boats out of the water once a year and using a bit of elbow grease, one of Britain's areas of outstanding natural beauty might still be intact rather than on the long road to recovery."

Judith H Moore | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>