Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting an answer to the threat of flooding

08.09.2006
The latest advances in computer flood modelling and animation that could help to improve the way we protect the UK’s towns and cities from flooding will be highlighted at this year’s BA Festival of Science in Norwich.

By improving the prediction and visualisation of the speed, direction and extent of water flow during potential flooding events, this research will help inform investment in flood defence and drainage infrastructure, where new developments should be sited and, where necessary, evacuation planning.

Developed by the multidisciplinary Flood Risk Management Research Consortium (FRMRC), these animations are based not only on state-of-the-art computer modelling tools identified and adapted by consortium researchers, but also on data pinpointing how land in and around UK towns and cities is used, such as for agricultural, industrial or residential purposes. Land-use can have a crucial impact on the severity of flooding events because agricultural practices, such as choice of crop and livestock density, can influence how much water runs off the land.

“Because the animations we are developing take into account not just the shape and contours of the land but also the way it is actually used, they provide additional information that can be used to assess the risk of flooding to people and property,” says Garry Pender, Professor of Environmental Engineering at Heriot-Watt University, who is leading the research.

The Flood Risk Management Research Consortium is a collaborative initiative supported by the Engineering and Physical Sciences Research Council (EPSRC), the Department for the Environment, Food and Rural Affairs (Defra), the Environment Agency, the Natural Environment Research Council (NERC), the Scottish Executive, UK Water Industry Research (UKWIR), and the Rivers Agency (Department of Agriculture and Rural Development, Northern Ireland).

Professor Pender’s team is placing particular emphasis on acquiring reliable, up-to-date digital information describing rivers’ catchments as well as their shapes. Recent developments in data collection using airborne mapping systems, such as LiDAR (Light Detection and Ranging), have significantly reduced the cost of collecting information of this kind.

This unprecedented combination of cutting-edge computer modelling capability and up-to-date information on land use offers the prospect of a major leap forward in flood management. During his presentation at the BA Festival, Professor Pender will demonstrate some of the computer animations that his team has already developed, which show test applications of the systems to hypothetical flood scenarios in Glasgow and London.

Professor Pender will also summarise the consortium’s progress in other areas and emphasise the multidisciplinary character of its work. The consortium is integrating, for the first time, engineering, land-use management, social sciences, decision support, and the provision of information to inform government policy to effectively target all the key aspects of flood-risk management, from flood forecasting to the environmental impact of flooding events.

“The overall aim of the consortium is to ensure that the UK is better equipped than ever before to manage the effects of flooding,” says Professor Pender.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>