Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surf's up -- and one coastal microbe has adapted

30.08.2006
With new cyanobacteria genome, scientists find life really does differ at the coast

California beachgoers may look lazy. But just a few miles off shore, scientists have discovered that a common coastal strain of cyanobacteria works diligently to thrive in choppy, polluted waters. In a study in this week's early online edition of The Proceedings of the National Academy of Sciences, researchers at The Institute for Genomic Research and Scripps Institution of Oceanography have sequenced the cyanobacterium's genome--and found that this coastal dweller has adapted to a turbulent environment by learning to use metals in ways that its open-ocean relatives cannot.

In the study, led by Ian Paulsen of The Institute for Genomic Research (TIGR), scientists set out to begin understanding the adaptation of bacterial genomes to the coastal versus open ocean environments. Cyanobacteria are abundant in coastal waters reaching more than 100,000 per ml. Using a strain called Synechococcus CC9311 isolated just off the California coast by collaborator Brian Palenik of Scripps, they team sequenced its genome. They then compared the microbe's genome to that of Synechococcus WH8102, a related cyanobacterial strain found in the open ocean, which they had previously studied.

As habitats, the coast and open ocean differ strikingly. Put simply, the coast is dicier. The wind stirs up nutrients from deeper depths, as well as sediments and land litter, sporadically sending metals and minerals surging through the water. Algae and other organisms enjoy this buffet of nutrients, which include pollutants from farm run-off and other human activity. All this gritty biomass alters the sunlight that seeps into the ocean layers, challenging organisms that photosynthesize, including cyanobacterium. In contrast to the disorderly coast, the open ocean presents a cleaner, more constant marine ecosystem.

How do cyanobacteria adapt to these starkly different settings? Genomics offers answers. In the PNAS study, the research team found that CC9311, the coastal cyanobacterium, has evolved a suite of metal-processing biology missing in its open-ocean relative. This molecular toolkit includes roughly a dozen metal enzymes or cofactors that can absorb, process, and store iron, copper, and possibly the element vanadium. What's more, the coastal cyanobacteria strain has a relatively complex regulatory system, with 11 histidine kinase sensors and 17 response regulators--nearly double the number found in the open-ocean strain--that is likely needed for its metal metabolism and to respond to the complex coastal environment.

Like a canary in a coal mine, Paulsen says, these cyanobacteria may in the future serve as biosensors. "With further studies, we'd like to use these organisms to detect environmental changes, such as pollution, in these different environments," Paulsen remarks. The team is already at work on a follow-up study, comparing differences in gene expression between the coastal and open-ocean cyanobacteria strains, when both are exposed to metal ions and other substances at very low (open ocean) or very high (coastal) concentrations. The current work was funded by the National Science Foundation.

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>