Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides first-ever look at combined causes of North Atlantic and Arctic Ocean freshening

28.08.2006
A new analysis of 50 years of changes in freshwater inputs to the Arctic Ocean and North Atlantic may help shed light on what's behind the recently observed freshening of the North Atlantic Ocean.

In a report, published in the August 25, 2006 issue of the journal, Science, MBL (Marine Biological Laboratory) senior scientist Bruce J. Peterson and his colleagues describe a first-of-its-kind effort to create a big-picture view of hydrologic trends in the Arctic. Their analysis reveals that freshwater increases from Arctic Ocean sources appear to be highly linked to a fresher North Atlantic.

"The high-latitude freshwater cycle is one of the most sensitive barometers of the impact of changes in climate and broad-scale atmospheric dynamics because of the polar amplification of the global warming signal," says Peterson. "It's easiest to measure these changes in the Arctic and the better we understand this system, the sooner we will know what is happening to the global hydrologic cycle."

The multi-disciplinary team of scientists led by Peterson calculated annual and cumulative freshwater input anomalies (deviations from expected levels) from net precipitation on the ocean surface, river discharge, net attrition of glaciers, and Arctic Ocean sea ice melt and export for the latter half of the 20th century. The scientists compared the fluxes to measured rates of freshwater accumulation in the North Atlantic during the same time period.

Their analysis showed that increasing river discharge and excess net precipitation on the ocean contributed the most freshwater (~20,000 cubic kilometers) to the Arctic and high-latitude North Atlantic. Sea ice reduction provided another ~15,000 cubic kilometers of freshwater, followed by ~2,000 cubic kilometers from melting glaciers. Together, the sum of anomalous inputs from all of the freshwater sources analyzed matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995.

"This synthesis allows us to judge which freshwater sources are the largest, but more importantly shows how the significance of different sources have changed over the past decades and what has caused the changes," says Peterson. "It prompts us to realize that the relative importance of different sources will change in future decades. Creating a big-picture or synoptic view of the changes in various components of the high-latitude freshwater cycle puts the parts in a perspective where we can judge their individual and collective impact on ocean freshening and circulation."

In recent years, much attention has been given to the observed freshening of Arctic Ocean and North Atlantic and the potential impacts it may have on the earth's climate. Scientists contend that a significant increase of freshwater flow to the Arctic Ocean could slow or halt the Atlantic Deep Water formation, a driving factor behind the great "conveyor belt" current that is responsible for redistributing salt and thermal energy around the globe, influencing the planet's climate. One of the potential effects of altered global ocean circulation could be a cooling of Northern Europe within this century.

The team's comparison of freshwater sources and ocean sink records revealed that over the last half century changes in freshwater inputs and ocean storage occurred not only in conjunction with one another, but in synchrony with rising air temperatures and an amplifying North Atlantic Oscillation (NAO), a climatic phenomenon that has strong impacts on weather and climate in the North Atlantic region and surrounding continents, and the associated Northern Annular Mode (NAM) index.

Peterson and his colleagues contend that the interplay between the NAO and NAM, and continued rising temperatures from global greenhouse warming, will likely determine whether the Arctic and North Atlantic Oceans will continue to freshen. But the scientists caution that the difficultly in predicting fluctuations in atmospheric circulation makes it impossible to know where we might be headed.

"Atmospheric modes of circulation such as the NAO and NAM exert a great deal of control on net precipitation in the ocean and even on regional temperatures, and hence ice melt as well," says Peterson. "But what drives the NAO is the $64,000 question. Our inability to predict trends in the NAO/NAM means that, even if we could predict global warming very well, a large degree of uncertainty will remain in any forecasts of the decadal-centennial trajectories of the Arctic freshwater balance."

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>